Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Hands-On Ensemble Learning with Python
Hands-On Ensemble Learning with Python

Hands-On Ensemble Learning with Python: Build highly optimized ensemble machine learning models using scikit-learn and Keras

Arrow left icon
Profile Icon Kyriakides Profile Icon Margaritis
Arrow right icon
€18.99 per month
Paperback Jul 2019 298 pages 1st Edition
eBook
€8.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m
Arrow left icon
Profile Icon Kyriakides Profile Icon Margaritis
Arrow right icon
€18.99 per month
Paperback Jul 2019 298 pages 1st Edition
eBook
€8.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m
eBook
€8.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Ensemble Learning with Python

A Machine Learning Refresher

Machine learning is a sub field of artificial intelligence (AI) focused on the aim of developing algorithms and techniques that enable computers to learn from massive amounts of data. Given the increasing rate at which data is produced, machine learning has played a critical role in solving difficult problems in recent years. This success was the main driving force behind the funding and development of many great machine learning libraries that make use of data in order to build predictive models. Furthermore, businesses have started to realize the potential of machine learning, driving the demand for data scientists and machine learning engineers to new heights, in order to design better-performing predictive models.

This chapter serves as a refresher on the main concepts and terminology, as well as an introduction to the frameworks that will be used...

Technical requirements

You will require basic knowledge of machine learning techniques and algorithms. Furthermore, a knowledge of python conventions and syntax is required. Finally, familiarity with the NumPy library will greatly help the reader to understand some custom algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter01

Check out the following video to see the Code in Action: http://bit.ly/30u8sv8.

Learning from data

Data is the raw ingredient of machine learning. Processing data can produce information; for example, measuring the height of a portion of a school's students (data) and calculating their average (processing) can give us an idea of the whole school's height (information). If we process the data further, for example, by grouping males and females and calculating two averages – one for each group, we will gain more information, as we will have an idea about the average height of the school's males and females. Machine learning strives to produce the most information possible from any given data. In this example, we produced a very basic predictive model. By calculating the two averages, we can predict the average height of any student just by knowing whether the student is male or female.

The set of data that a machine learning algorithm...

Supervised and unsupervised learning

Machine learning can be divided into many subcategories; two broad categories are supervised and unsupervised learning. These categories contain some of the most popular and widely used machine learning methods. In this section, we present them, as well as some toy example uses of supervised and unsupervised learning.

Supervised learning

In examples such as those in the previous section, the data consisted of some features and a target; no matter whether the target was quantitative (regression) or categorical (classification). Under these circumstances, we call the dataset a labeled dataset. When we try to produce a model from a labeled dataset in order to make predictions about unseen...

Performance measures

Machine learning is a highly quantitative field. Although we can gauge the performance of a model by plotting how it separates classes and how closely it follows data, more quantitative performance measures are needed in order to evaluate models. In this section, we present cost functions and metrics. Both of them are used in order to assess a model's performance.

Cost functions

A machine learning model's objective is to model our dataset. In order to assess each model's performance, we define an objective function. These functions usually express a cost, or how far from perfect a model is. These cost functions usually utilize a loss function to assess how well the model performed on each...

Technical requirements

You will require basic knowledge of machine learning techniques and algorithms. Furthermore, a knowledge of python conventions and syntax is required. Finally, familiarity with the NumPy library will greatly help the reader to understand some custom algorithm implementations.

The code files of this chapter can be found on GitHub:

https://github.com/PacktPublishing/Hands-On-Ensemble-Learning-with-Python/tree/master/Chapter02

Check out the following video to see the Code in Action: http://bit.ly/2JKkWYS.

Bias, variance, and the trade-off

Machine learning models are not perfect; they are prone to a number of errors. The two most common sources of errors are bias and variance. Although two distinct problems, they are interconnected and relate to a model's available degree of freedom or complexity.

What is bias?

Bias refers to the inability of a method to correctly estimate the target. This does not only apply to machine learning. For example, in statistics, if we want to measure a population's average and do not sample carefully, the estimated average will be biased. In simple terms, the method's (sampling) estimation will not closely match the actual target (average).

In machine learning, bias refers to the difference...

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Implement ensemble models using algorithms such as random forests and AdaBoost
  • Apply boosting, bagging, and stacking ensemble methods to improve the prediction accuracy of your model
  • Explore real-world data sets and practical examples coded in scikit-learn and Keras

Description

Ensembling is a technique of combining two or more similar or dissimilar machine learning algorithms to create a model that delivers superior predictive power. This book will demonstrate how you can use a variety of weak algorithms to make a strong predictive model. With its hands-on approach, you'll not only get up to speed with the basic theory but also the application of different ensemble learning techniques. Using examples and real-world datasets, you'll be able to produce better machine learning models to solve supervised learning problems such as classification and regression. In addition to this, you'll go on to leverage ensemble learning techniques such as clustering to produce unsupervised machine learning models. As you progress, the chapters will cover different machine learning algorithms that are widely used in the practical world to make predictions and classifications. You'll even get to grips with the use of Python libraries such as scikit-learn and Keras for implementing different ensemble models. By the end of this book, you will be well-versed in ensemble learning, and have the skills you need to understand which ensemble method is required for which problem, and successfully implement them in real-world scenarios.

Who is this book for?

This book is for data analysts, data scientists, machine learning engineers and other professionals who are looking to generate advanced models using ensemble techniques. An understanding of Python code and basic knowledge of statistics is required to make the most out of this book.

What you will learn

  • Implement ensemble methods to generate models with high accuracy
  • Overcome challenges such as bias and variance
  • Explore machine learning algorithms to evaluate model performance
  • Understand how to construct, evaluate, and apply ensemble models
  • Analyze tweets in real time using Twitter s streaming API
  • Use Keras to build an ensemble of neural networks for the MovieLens dataset

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jul 19, 2019
Length: 298 pages
Edition : 1st
Language : English
ISBN-13 : 9781789612851
Vendor :
Google
Category :
Languages :
Tools :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Jul 19, 2019
Length: 298 pages
Edition : 1st
Language : English
ISBN-13 : 9781789612851
Vendor :
Google
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 111.97
Python Machine Learning
€41.99
Hands-On Ensemble Learning with Python
€32.99
Ensemble Machine Learning Cookbook
€36.99
Total 111.97 Stars icon
Banner background image

Table of Contents

19 Chapters
Section 1: Introduction and Required Software Tools Chevron down icon Chevron up icon
A Machine Learning Refresher Chevron down icon Chevron up icon
Getting Started with Ensemble Learning Chevron down icon Chevron up icon
Section 2: Non-Generative Methods Chevron down icon Chevron up icon
Voting Chevron down icon Chevron up icon
Stacking Chevron down icon Chevron up icon
Section 3: Generative Methods Chevron down icon Chevron up icon
Bagging Chevron down icon Chevron up icon
Boosting Chevron down icon Chevron up icon
Random Forests Chevron down icon Chevron up icon
Section 4: Clustering Chevron down icon Chevron up icon
Clustering Chevron down icon Chevron up icon
Section 5: Real World Applications Chevron down icon Chevron up icon
Classifying Fraudulent Transactions Chevron down icon Chevron up icon
Predicting Bitcoin Prices Chevron down icon Chevron up icon
Evaluating Sentiment on Twitter Chevron down icon Chevron up icon
Recommending Movies with Keras Chevron down icon Chevron up icon
Clustering World Happiness Chevron down icon Chevron up icon
Another Book You May Enjoy Chevron down icon Chevron up icon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.