Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning Architectures with Python

You're reading from   Hands-On Deep Learning Architectures with Python Create deep neural networks to solve computational problems using TensorFlow and Keras

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781788998086
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Saransh Mehta Saransh Mehta
Author Profile Icon Saransh Mehta
Saransh Mehta
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: The Elements of Deep Learning FREE CHAPTER
2. Getting Started with Deep Learning 3. Deep Feedforward Networks 4. Restricted Boltzmann Machines and Autoencoders 5. Section 2: Convolutional Neural Networks
6. CNN Architecture 7. Mobile Neural Networks and CNNs 8. Section 3: Sequence Modeling
9. Recurrent Neural Networks 10. Section 4: Generative Adversarial Networks (GANs)
11. Generative Adversarial Networks 12. Section 5: The Future of Deep Learning and Advanced Artificial Intelligence
13. New Trends of Deep Learning 14. Other Books You May Enjoy

Generative Adversarial Networks

In this chapter, we will explain one of the most interesting deep learning models, Generative Adversarial Networks (GANs). We will start by reviewing what GANs are and what they are used for. After briefly covering the evolution paths of GAN models, we will illustrate a variety of GAN architectures, along with image generation examples.

Imagine you are in a competition of mimicking an artwork (such as Vincent van Gogh's The Starry Night) that you don't know enough about initially. You are allowed to participate as many times as you wish. And every time you submit your entry, the judge gives you feedback on what the real artwork looks like and how close your replica is. In the first few trials, your work does not score high, owing to your very limited knowledge of the original piece. After a few trails, your submissions are getting closer...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image