- In the continuous bag-of-words (CBOW) model, we try to predict the target word given the context word, and in the skip-gram model, we try to predict the context word given the target word.
-
The loss function of the CBOW model is given as follows:
- When we have millions of words in the vocabulary, we need to perform numerous weight updates until we predict the correct target word. It is time-consuming and also not an efficient method. So, instead of doing this, we mark the correct target word as a positive class and sample a few words from the vocabulary and mark it as a negative class, and this is called negative sampling
-
PV-DM is similar to a continuous bag of words model, where we try to predict the target word given a context word. In PV-DM, along with word vectors, we introduce one more vector, called the paragraph vector. As the...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Japan
Slovakia