Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Computer Vision with TensorFlow 2

You're reading from   Hands-On Computer Vision with TensorFlow 2 Leverage deep learning to create powerful image processing apps with TensorFlow 2.0 and Keras

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781788830645
Length 372 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Eliot Andres Eliot Andres
Author Profile Icon Eliot Andres
Eliot Andres
Benjamin Planche Benjamin Planche
Author Profile Icon Benjamin Planche
Benjamin Planche
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: TensorFlow 2 and Deep Learning Applied to Computer Vision FREE CHAPTER
2. Computer Vision and Neural Networks 3. TensorFlow Basics and Training a Model 4. Modern Neural Networks 5. Section 2: State-of-the-Art Solutions for Classic Recognition Problems
6. Influential Classification Tools 7. Object Detection Models 8. Enhancing and Segmenting Images 9. Section 3: Advanced Concepts and New Frontiers of Computer Vision
10. Training on Complex and Scarce Datasets 11. Video and Recurrent Neural Networks 12. Optimizing Models and Deploying on Mobile Devices 13. Migrating from TensorFlow 1 to TensorFlow 2 14. Assessments 15. Other Books You May Enjoy

Unsupervised learning

However, how do we train a network when we do not have any ground truth information available? Unsupervised learning is one answer to this. The idea here is to craft a function that computes the network's loss only based on its input and its corresponding output.

This strategy applies very well to applications such as clustering (grouping images with similar properties together) or compression (reducing the content size while preserving some properties). For clustering, the loss function could measure how similar images from one cluster are compared to images from other clusters. For compression, the loss function could measure how well preserved the important properties are in the compressed data compared to the original ones.

Unsupervised learning thus requires some expertise regarding the use cases so that we can come up with meaningful loss functions.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image