Such a model can be implemented really easily in Python (using NumPy for vector and matrix manipulations):
import numpy as np
class Neuron(object):
"""A simple feed-forward artificial neuron.
Args:
num_inputs (int): The input vector size / number of input values.
activation_fn (callable): The activation function.
Attributes:
W (ndarray): The weight values for each input.
b (float): The bias value, added to the weighted sum.
activation_fn (callable): The activation function.
"""
def __init__(self, num_inputs, activation_fn):
super().__init__()
# Randomly initializing the weight vector and bias value:
self.W = np.random.rand(num_inputs)
self.b = np.random.rand(1)
self.activation_fn = activation_fn
def forward(self, x):
"""Forward the input signal through the neuron."""
z = np.dot(x, self.W) + self.b...