Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Artificial Intelligence for IoT

You're reading from   Hands-On Artificial Intelligence for IoT Expert machine learning and deep learning techniques for developing smarter IoT systems

Arrow left icon
Product type Paperback
Published in Jan 2019
Publisher Packt
ISBN-13 9781788836067
Length 390 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dr. Amita Kapoor Dr. Amita Kapoor
Author Profile Icon Dr. Amita Kapoor
Dr. Amita Kapoor
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Principles and Foundations of IoT and AI FREE CHAPTER 2. Data Access and Distributed Processing for IoT 3. Machine Learning for IoT 4. Deep Learning for IoT 5. Genetic Algorithms for IoT 6. Reinforcement Learning for IoT 7. Generative Models for IoT 8. Distributed AI for IoT 9. Personal and Home IoT 10. AI for the Industrial IoT 11. AI for Smart Cities IoT 12. Combining It All Together 13. Other Books You May Enjoy

Introduction


Generative models are an exciting new branch of deep learning models that learn through unsupervised learning. The main idea is to generate new samples having the same distribution as the given training data; for example, a network trained on handwritten digits can create new digits that aren't in the dataset but are similar to them. Formally, we can say that if the training data follows the distribution Pdata(x), then the goal of generative models is to estimate the probability density function Pmodel(x), which is similar to Pdata(x).

Generative models can be classified into two types: 

  • Explicit generative models: Here, the probability density function Pmodel(x) is explicitly defined and solved. The density function may be tractable as in the case of PixelRNN/CNN, or an approximation of the density function as in the case of VAE.
  • Implicit generative models: In these, the network learns to generate a sample from Pmodel(x) without explicitly defining it. GANs are an example of this...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image