Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with Google BERT

You're reading from   Getting Started with Google BERT Build and train state-of-the-art natural language processing models using BERT

Arrow left icon
Product type Paperback
Published in Jan 2021
Publisher Packt
ISBN-13 9781838821593
Length 352 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1 - Starting Off with BERT
2. A Primer on Transformers FREE CHAPTER 3. Understanding the BERT Model 4. Getting Hands-On with BERT 5. Section 2 - Exploring BERT Variants
6. BERT Variants I - ALBERT, RoBERTa, ELECTRA, and SpanBERT 7. BERT Variants II - Based on Knowledge Distillation 8. Section 3 - Applications of BERT
9. Exploring BERTSUM for Text Summarization 10. Applying BERT to Other Languages 11. Exploring Sentence and Domain-Specific BERT 12. Working with VideoBERT, BART, and More 13. Assessments 14. Other Books You May Enjoy

Summary

We started off the chapter by understanding how the M-BERT model works. We understood that M-BERT is trained without any cross-lingual objective, just like how we trained the BERT model, and it produces a representation that generalizes across multiple languages for downstream tasks.

Moving on, we investigated how multilingual our M-BERT is. We learned that M-BERT's generalizability does not depend on the vocabulary overlap, relying instead on typological and language similarity. We also saw that M-BERT can handle code switched text, but not transliterated text.

Later, we learned about the XLM model, where we train BERT with a cross-lingual objective. We train XLM with MLM and TLM tasks. The TLM task works just like MLM, but in TLM, we train the model on cross-lingual data, that is, parallel data consisting of the same text in two different languages.

Next, we explored the XLM-R model, which uses the RoBERTa architecture. We train the XLM-R model only on the MLM task and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image