Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Extending Power BI with Python and R

You're reading from   Extending Power BI with Python and R Ingest, transform, enrich, and visualize data using the power of analytical languages

Arrow left icon
Product type Paperback
Published in Nov 2021
Publisher Packt
ISBN-13 9781801078207
Length 558 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Luca Zavarella Luca Zavarella
Author Profile Icon Luca Zavarella
Luca Zavarella
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Section 1: Best Practices for Using R and Python in Power BI
2. Chapter 1: Where and How to Use R and Python Scripts in Power BI FREE CHAPTER 3. Chapter 2: Configuring R with Power BI 4. Chapter 3: Configuring Python with Power BI 5. Section 2: Data Ingestion and Transformation with R and Python in Power BI
6. Chapter 4: Importing Unhandled Data Objects 7. Chapter 5: Using Regular Expressions in Power BI 8. Chapter 6: Anonymizing and Pseudonymizing Your Data in Power BI 9. Chapter 7: Logging Data from Power BI to External Sources 10. Chapter 8: Loading Large Datasets beyond the Available RAM in Power BI 11. Section 3: Data Enrichment with R and Python in Power BI
12. Chapter 9: Calling External APIs to Enrich Your Data 13. Chapter 10: Calculating Columns Using Complex Algorithms 14. Chapter 11: Adding Statistics Insights: Associations 15. Chapter 12: Adding Statistics Insights: Outliers and Missing Values 16. Chapter 13: Using Machine Learning without Premium or Embedded Capacity 17. Section 3: Data Visualization with R in Power BI
18. Chapter 14: Exploratory Data Analysis 19. Chapter 15: Advanced Visualizations 20. Chapter 16: Interactive R Custom Visuals 21. Other Books You May Enjoy

Using R and Python to interact with your data

In the previous section, you saw all the ways you can interact with your data in Power BI via R or Python scripts. Beyond knowing how and where to inject your code into Power BI, it is very important to know how your code will interact with that data. It's here that we see a big difference between the effect of scripts injected via Power Query Editor and scripts used in visuals:

  • Scripts via Power Query Editor: This type of script will transform the data and persist transformations in the model. This means that it will always be possible to retrieve the transformed data from any object within Power BI. Also, once the scripts have been executed and have taken effect, they will not be re-executed unless the data is refreshed. Therefore, it is recommended to inject code in R or Python via Power Query Editor when you intend to use the resulting insights in other visuals, or in the data model.
  • Scripts in visuals: The scripts used within the R and Python script visuals extract particular insights from the data and only make them evident to the user through visualization. Like all the other visuals on a report page, the R and Python script visuals are also interconnected with the other visuals. This means that the script visuals are subject to cross-filtering and therefore they are refreshed every time you interact with other visuals in the report. That said, it is not possible to persist the results obtained from the visuals scripts in the data model.

    Tip

    Thanks to the interactive nature of R and Python script visuals due to cross-filtering, it is possible to inject code useful to extract real-time insights from data, but also from external sources (you'll see how in Chapter 9, Calling External APIs to Enrich Your Data). The important thing to keep in mind is that, as previously stated, it is then only possible to visualize such information, or at the most to write it to external repositories (as you will see in Chapter 7, Logging Data from Power BI to External Sources).

In the final section of this chapter, let's look at the limitations of using R and Python when it comes to various Power BI products.

You have been reading a chapter from
Extending Power BI with Python and R
Published in: Nov 2021
Publisher: Packt
ISBN-13: 9781801078207
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image