Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Effective Robotics Programming with ROS

You're reading from   Effective Robotics Programming with ROS Find out everything you need to know to build powerful robots with the most up-to-date ROS

Arrow left icon
Product type Paperback
Published in Dec 2016
Publisher Packt
ISBN-13 9781786463654
Length 468 pages
Edition 3rd Edition
Tools
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Luis S√°nchez Luis S√°nchez
Author Profile Icon Luis S√°nchez
Luis S√°nchez
Enrique Fernandez Perdomo Enrique Fernandez Perdomo
Author Profile Icon Enrique Fernandez Perdomo
Enrique Fernandez Perdomo
Anil Mahtani Anil Mahtani
Author Profile Icon Anil Mahtani
Anil Mahtani
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Getting Started with ROS FREE CHAPTER 2. ROS Architecture and Concepts 3. Visualization and Debugging Tools 4. 3D Modeling and Simulation 5. The Navigation Stack – Robot Setups 6. The Navigation Stack – Beyond Setups 7. Manipulation with MoveIt! 8. Using Sensors and Actuators with ROS 9. Computer Vision 10. Point Clouds Index

What this book covers

Chapter 1, Getting Started with ROS, shows the easiest way you must follow in order to have a working installation of ROS. You will see how to install ROS on different platforms, and you will use ROS Kinetic throughout the rest of the book. This chapter describes how to make an installation from Debian packages, compile the sources, and make installations in virtual machines, Docker, and ARM CPU.

Chapter 2, ROS Architecture and Concepts, is concerned with the concepts and tools provided by the ROS framework. We will introduce you to nodes, topics, and services, and you will also learn how to use them. Through a series of examples, we will illustrate how to debug a node and visualize the messages published through a topic.

Chapter 3, Visualization and Debugging Tools, goes a step further in order to show you powerful tools to debug your nodes and visualize the information that goes through the node's graph along with the topics. ROS provides a logging API that allows you to diagnose node problems easily. In fact, we will see some powerful graphical tools, such as rqt_console and rqt_graph, as well as visualization interfaces, such as rqt_plot and rviz. Finally, this chapter explains how to record and play back messages using rosbag and rqt_bag.

Chapter 4, 3D Modeling and Simulation, constitutes one of the first steps in order to implement your own robot in ROS. It shows you how to model a robot from scratch and run it in simulation using the Gazebo simulator. You will simulate sensors, such as cameras and laser range sensors. This will later allow you to use the whole navigation stack provided by ROS and other tools.

Chapter 5, The Navigation Stack – Robot Setups, is the first of two chapters concerned with the ROS navigation stack. This chapter describes how to configure your robot so that it can be used with the navigation stack. In the same way, the stack is explained, along with several examples.

Chapter 6, The Navigation Stack – Beyond Setups, continues the discussion of the previous chapter by showing how we can effectively make our robot navigate autonomously. It will use the navigation stack intensively for that. This chapter shows the great potential of ROS using the Gazebo simulator and RViz to create a virtual environment in which we can build a map, localize our robot, and do path planning with obstacle avoidance.

Chapter 7, Manipulation with MoveIt!, is a set of tools for mobile manipulation in ROS. This chapter contains the documentation that you need to install this package. The chapter also contains example demonstrations with robotic arms that use MoveIt! for manipulation tasks, such as grasping, picking and placing, or simple motion planning with inverse kinematics.

Chapter 8, Using Sensors and Actuators with ROS, literally connects ROS with the real world. This chapter goes through a number of common sensors and actuators that are supported in ROS, such as range lasers, servo motors, cameras, RGB-D sensors, and GPS. Moreover, we explain how to use embedded systems with microcontrollers, similar to the widely known Arduino boards.

Chapter 9, Computer Vision, shows the support for cameras and computer vision tasks in ROS. This chapter starts with drivers available for FireWire and USB cameras so that you can connect them to your computer and capture images. You will then be able to calibrate your camera using the ROS calibration tools. Later, you will be able to use the image pipeline, which is explained in detail. Then, you will see how to use several APIs for vision and integrate OpenCV. Finally, the installation and usage of a visual odometry software is described.

Chapter 10, Point Clouds, shows how to use Point Cloud Library in your ROS nodes. This chapter starts with the basics utilities, such as read or write a PCL snippet and the conversions needed to publish or subscribe to these messages. Then, you will create a pipeline with different nodes to process 3D data, and you will downsample, filter, and search for features using PCL.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image