Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with Keras

You're reading from   Deep Learning with Keras Implementing deep learning models and neural networks with the power of Python

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781787128422
Length 318 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Antonio Gulli Antonio Gulli
Author Profile Icon Antonio Gulli
Antonio Gulli
Sujit Pal Sujit Pal
Author Profile Icon Sujit Pal
Sujit Pal
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Neural Networks Foundations FREE CHAPTER 2. Keras Installation and API 3. Deep Learning with ConvNets 4. Generative Adversarial Networks and WaveNet 5. Word Embeddings 6. Recurrent Neural Network — RNN 7. Additional Deep Learning Models 8. AI Game Playing 9. Conclusion

RNN topologies


The APIs for MLP and CNN architectures are limited. Both architectures accept a fixed-size tensor as input and produce a fixed-size tensor as output; and they perform the transformation from input to output in a fixed number of steps given by the number of layers in the model. RNNs don't have this limitation—you can have sequences in the input, the output, or both. This means that RNNs can be arranged in many ways to solve specific problems.

As we have learned, RNNs combine the input vector with the previous state vector to produce a new state vector. This can be thought of as similar to running a program with some inputs and some internal variables. Thus RNNs can be thought of as essentially describing computer programs. In fact, it has been shown that RNNs are turing complete (for more information refer to the article: On the Computational Power of Neural Nets, by H. T. Siegelmann and E. D. Sontag, proceedings of the fifth annual workshop on computational learning theory...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image