In previous chapters, we covered the basics of deep learning as applied to the fields of computer vision and natural language processing (NLP). Most of these techniques can be broadly classified as supervised learning techniques, where the goal is to learn patterns from training data and apply them to unseen test instances. This pattern learning is often represented as a model learnt over large volumes of training data. Obtaining such large volumes of labeled data is often a challenge. This necessitates a new approach to learning patterns from data with or without labels. To ensure correct training, minimal supervision may be provided in the form of a reward if the model correctly learns a pattern, or a penalty otherwise. Reinforcement learning provides a statistical framework to achieve this task in a principled manner. In this chapter, we will cover...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Japan
Slovakia