Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science  with Python

You're reading from   Data Science with Python Combine Python with machine learning principles to discover hidden patterns in raw data

Arrow left icon
Product type Paperback
Published in Jul 2019
Publisher Packt
ISBN-13 9781838552862
Length 426 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Rohan Chopra Rohan Chopra
Author Profile Icon Rohan Chopra
Rohan Chopra
Mohamed Noordeen Alaudeen Mohamed Noordeen Alaudeen
Author Profile Icon Mohamed Noordeen Alaudeen
Mohamed Noordeen Alaudeen
Aaron England Aaron England
Author Profile Icon Aaron England
Aaron England
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

About the Book 1. Introduction to Data Science and Data Pre-Processing FREE CHAPTER 2. Data Visualization 3. Introduction to Machine Learning via Scikit-Learn 4. Dimensionality Reduction and Unsupervised Learning 5. Mastering Structured Data 6. Decoding Images 7. Processing Human Language 8. Tips and Tricks of the Trade 1. Appendix

Saving and Loading a Model

The last piece in mastering structured data is the ability to save and load the models that you have trained and fine-tuned. Training a new model every time we need a prediction will waste a lot of time, so being able to save a trained model is imperative for data scientists. The saved model allows us to replicate the results and to create apps and services that make use of the machine learning model. The steps are as follows:

  1. To save an XGBoost model, you need to call the save_model function.

    model.save_model('wholesale-model.model')

  2. To load a previously saved model, you have to call load_model on an initialized XGBoost variable.

    loaded_model = xgb.Booster({'nthread': 2})

    loaded_model.load_model('wholesale-model.model')

    Note

    If you give XGBoost access to all the threads it can get, your computer might become slow while training or predicting.

You are now ready to get started on modeling your structured dataset using the XGBoost...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image