Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science Projects with Python

You're reading from   Data Science Projects with Python A case study approach to gaining valuable insights from real data with machine learning

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781800564480
Length 432 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Stephen Klosterman Stephen Klosterman
Author Profile Icon Stephen Klosterman
Stephen Klosterman
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Preface
1. Data Exploration and Cleaning 2. Introduction to Scikit-Learn and Model Evaluation FREE CHAPTER 3. Details of Logistic Regression and Feature Exploration 4. The Bias-Variance Trade-Off 5. Decision Trees and Random Forests 6. Gradient Boosting, XGBoost, and SHAP Values 7. Test Set Analysis, Financial Insights, and Delivery to the Client Appendix

Summary

In this chapter, we introduced the final details of logistic regression and continued to understand how to use scikit-learn to fit logistic regression models. We gained more visibility into how the model fitting process works by learning about the concept of a cost function, which is minimized by the gradient descent procedure to estimate parameters during model fitting.

We also learned of the need for regularization by introducing the concepts of underfitting and overfitting. In order to reduce overfitting, we saw how to adjust the cost function to regularize the coefficients of a logistic regression model using an L1 or L2 penalty. We used cross-validation to select the amount of regularization by tuning the regularization hyperparameter. To reduce underfitting, we saw how to do some simple feature engineering with interaction features for the case study data.

We are now familiar with some of the most important concepts in machine learning. We have, so far, only used...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image