Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applying Math with Python

You're reading from   Applying Math with Python Practical recipes for solving computational math problems using Python programming and its libraries

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838989750
Length 358 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Sam Morley Sam Morley
Author Profile Icon Sam Morley
Sam Morley
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Basic Packages, Functions, and Concepts 2. Mathematical Plotting with Matplotlib FREE CHAPTER 3. Calculus and Differential Equations 4. Working with Randomness and Probability 5. Working with Trees and Networks 6. Working with Data and Statistics 7. Regression and Forecasting 8. Geometric Problems 9. Finding Optimal Solutions 10. Miscellaneous Topics 11. Other Books You May Enjoy

Getting descriptive statistics from a DataFrame

Descriptive statistics, or summary statistics, are simple values associated with a set of data, such as the mean, median, standard deviation, minimum, maximum, and quartile values. These values describe the location and spread of a dataset in various ways. The mean and median are measures of the center (location) of the data, and the other values measure the spread of the data from the mean and median. These statistics are vital in understanding a dataset and form the basis for many techniques for analysis.

In this recipe, we will see how to generate descriptive statistics for each column in a DataFrame.

Getting ready

For this recipe, we need the pandas package imported as pd, the NumPy package imported as np, the matplotlib pyplot module imported as plt, and a default random number generator created using the following commands:

from numpy.random import default_rng
rng = default_rng(12345)
...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image