Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Applied Unsupervised Learning with Python

You're reading from   Applied Unsupervised Learning with Python Discover hidden patterns and relationships in unstructured data with Python

Arrow left icon
Product type Paperback
Published in May 2019
Publisher
ISBN-13 9781789952292
Length 482 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Johnston Benjamin Johnston
Author Profile Icon Benjamin Johnston
Benjamin Johnston
Christopher Kruger Christopher Kruger
Author Profile Icon Christopher Kruger
Christopher Kruger
Aaron Jones Aaron Jones
Author Profile Icon Aaron Jones
Aaron Jones
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Applied Unsupervised Learning with Python
Preface
1. Introduction to Clustering FREE CHAPTER 2. Hierarchical Clustering 3. Neighborhood Approaches and DBSCAN 4. Dimension Reduction and PCA 5. Autoencoders 6. t-Distributed Stochastic Neighbor Embedding (t-SNE) 7. Topic Modeling 8. Market Basket Analysis 9. Hotspot Analysis Appendix

Summary


DBSCAN takes an interesting approach to clustering compared to k-means and hierarchical clustering. While hierarchical clustering can, in some aspects, be seen as an extension of the nearest neighbors approach seen in k-means, DBSCAN approaches the problem of finding neighbors by applying a notion of density. This can prove extremely beneficial when it comes to highly complex data that is intertwined in a complex fashion. While DBSCAN is very powerful, it is not infallible and can be seen as potentially overkill, depending on what your original data looks like.

Combined with k-means and hierarchical clustering, however, DBSCAN completes a strong toolbox when it comes to the unsupervised learning task of clustering your data. When faced with any problem in this space, it is worthwhile to compare the performance of each method and see which performs best.

With clustering explored, we will now move onto another key piece of rounding out your skills in unsupervised learning: dimensionality...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image