Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
AI Product Manager's Handbook

You're reading from   AI Product Manager's Handbook Build, integrate, scale, and optimize products to grow as an AI product manager

Arrow left icon
Product type Paperback
Published in Nov 2024
Publisher Packt
ISBN-13 9781835882849
Length 484 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Irene Bratsis Irene Bratsis
Author Profile Icon Irene Bratsis
Irene Bratsis
Arrow right icon
View More author details
Toc

Table of Contents (26) Chapters Close

Preface 1. Part 1: Lay of the Land – Terms, Infrastructure, Types of AI, and Products Done Well
2. Understanding the Infrastructure and Tools for Building AI Products FREE CHAPTER 3. Model Development and Maintenance for AI Products 4. Deep Learning Deep Dive 5. Commercializing AI Products 6. AI Transformation and Its Impact on Product Management 7. Part 2: Building an AI-Native Product
8. Understanding the AI-Native Product 9. Productizing the ML Service 10. Customization for Verticals, Customers, and Peer Groups 11. Product Design for the AI-Native Product 12. Benchmarking Performance, Growth Hacking, and Cost 13. Managing the AI-Native Product 14. Part 3: Integrating AI into Existing Traditional Software Products
15. The Rising Tide of AI 16. Trends and Insights Across Industry 17. Evolving Products into AI Products 18. The Role of AI Product Design 19. Managing the Evolving AI Product 20. Part 4: Managing the AI PM Career
21. Starting a Career as an AI PM 22. What Does It Mean to Be a Good AI PM? 23. Maturing and Growing as an AI PM 24. Other Books You May Enjoy
25. Index

Summary

We got the chance to go deep into DL in this chapter and understand some of the major influences that impact this subsection of ML. We also got the chance to look at some of the specific ANNs that are most commonly used in products powered by DL in order to get more familiar with the actual models we might come across as we build with DL. We ended the chapter with a look at some of the other emerging technologies that collaborate with DL, as well as getting further into some of the concepts that impact DL most: explainability and guidelines for success.

DL ANNs are super powerful and can exhibit great performance, but if you need to explain them, you will run into more issues than you would if you stick to more traditional ML models. We’ve now spent the first three chapters of the book getting familiar with the more technical side of AI product management. Now that we’ve got that foundation covered, we can spend some time contextualizing all this tech.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime