Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with TensorFlow 2 and Keras

You're reading from   Advanced Deep Learning with TensorFlow 2 and Keras Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781838821654
Length 512 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras 2. Deep Neural Networks FREE CHAPTER 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods 11. Object Detection 12. Semantic Segmentation 13. Unsupervised Learning Using Mutual Information 14. Other Books You May Enjoy
15. Index

2. MLP, CNN, and RNN

We've already mentioned that we'll be using three deep learning networks, they are:

  • MLP: Multilayer Perceptron
  • CNN: Convolutional Neural Network
  • RNN: Recurrent Neural Network

These are the three networks that we will be using throughout this book. Later on, you'll find that they are often combined together in order to take advantage of the strength of each network.

In this chapter, we'll discuss these building blocks one by one in more detail. In the following sections, MLP is covered alongside other important topics such as loss functions, optimizers, and regularizers. Following this, we'll cover both CNNs and RNNs.

The differences between MLP, CNN, and RNN

An MLP is a fully connected (FC) network. You'll often find it referred to as either deep feed-forward network or feed-forward neural network in some literature. In this book, we will use the term MLP. Understanding this network in terms of known target applications will help us to get insights about the underlying reasons for the design of the advanced deep learning models.

MLPs are common in simple logistic and linear regression problems. However, MLPs are not optimal for processing sequential and multi-dimensional data patterns. By design, an MLP struggles to remember patterns in sequential data and requires a substantial number of parameters to process multi-dimensional data.

For sequential data input, RNNs are popular because the internal design allows the network to discover dependency in the history of the data, which is useful for prediction. For multi-dimensional data like images and videos, CNNs excel in extracting feature maps for classification, segmentation, generation, and other downstream tasks. In some cases, a CNN in the form of a 1D convolution is also used for networks with sequential input data. However, in most deep learning models, MLP and CNN or RNN are combined to make the most out of each network.

MLP, CNN, and RNN do not complete the whole picture of deep networks. There is a need to identify an objective or loss function, an optimizer, and a regularizer. The goal is to reduce the loss function value during training, since such a reduction is a good indicator that a model is learning.

To minimize this value, the model employs an optimizer. This is an algorithm that determines how weights and biases should be adjusted at each training step. A trained model must work not only on the training data but also on data outside of the training environment. The role of the regularizer is to ensure that the trained model generalizes to new data.

Now, let's get into the three networks – we'll begin by talking about the MLP network.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image