Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with Keras

You're reading from   Advanced Deep Learning with Keras Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788629416
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras FREE CHAPTER 2. Deep Neural Networks 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods Other Books You May Enjoy Index

Conclusion

In this chapter, we've presented various improvements in the original algorithm of GAN, first introduced in the previous chapter. WGAN proposed an algorithm to improve the stability of training by using the EMD or Wassertein 1 loss. LSGAN argued that the original cross-entropy function of GAN is prone to vanishing gradients, unlike least squares loss. LSGAN proposed an algorithm to achieve stable training and quality outputs. ACGAN convincingly improved the quality of the conditional generation of MNIST digits by requiring the discriminator to perform classification task on top of determining whether the input image is fake or real.

In the next chapter, we'll study how to control the attributes of generator outputs. Whilst CGAN and ACGAN are able to indicate the desired digits to produce; we have not analyzed GANs that can specify the attributes of outputs. For example, we may want to control the writing style of the MNIST digits such as roundness, tilt angle, and thickness...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image