Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Deep Learning with Keras

You're reading from   Advanced Deep Learning with Keras Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Arrow left icon
Product type Paperback
Published in Oct 2018
Publisher Packt
ISBN-13 9781788629416
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Rowel Atienza Rowel Atienza
Author Profile Icon Rowel Atienza
Rowel Atienza
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introducing Advanced Deep Learning with Keras FREE CHAPTER 2. Deep Neural Networks 3. Autoencoders 4. Generative Adversarial Networks (GANs) 5. Improved GANs 6. Disentangled Representation GANs 7. Cross-Domain GANs 8. Variational Autoencoders (VAEs) 9. Deep Reinforcement Learning 10. Policy Gradient Methods Other Books You May Enjoy Index

Principles of autoencoders


In this section, we're going to go over the principles of autoencoders. In this section, we're going to be looking at autoencoders with the MNIST dataset, which we were first introduced to in the previous chapters.

Firstly, we need to be made aware that an autoencoder has two operators, these are:

  • Encoder: This transforms the input, x, into a low-dimensional latent vector, z = f(x). Since the latent vector is of low dimension, the encoder is forced to learn only the most important features of the input data. For example, in the case of MNIST digits, the important features to learn may include writing style, tilt angle, roundness of stroke, thickness, and so on. Essentially, these are the most important information needed to represent digits zero to nine.

  • Decoder: This tries to recover the input from the latent vector,

    . Although the latent vector has a low dimension, it has a sufficient size to allow the decoder to recover the input data.

The goal of the decoder...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image