Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon

How-To Tutorials - Data

1210 Articles
article-image-uber-ai-labs-senior-research-scientist-ankit-jain-tensorflow-updates-learning-machine-learning
Sugandha Lahoti
19 Dec 2019
10 min read
Save for later

Uber AI Labs senior research scientist, Ankit Jain on TensorFlow updates and learning machine learning by doing [Interview]

Sugandha Lahoti
19 Dec 2019
10 min read
No doubt, TensorFlow is one of the most popular machine learning libraries right now. However, newbie developers who want to experiment with TensorFlow often face difficulties in learning TensorFlow, relying just on tutorials.  Recently, we sat down with Ankit Jain, senior research scientist at Uber AI Labs and one of the authors of the book, TensorFlow Machine Learning Projects. Ankit talked about how real-world implementations can be a good way to learn for those developing TF models, specifically the ‘learn by doing’ approach. Talking about TensorFlow 2.0, he considers ‘eager execution by default’ a major paradigm shift and is all game for interoperability between TF 2.0 and other machine learning frameworks. He also gave us an insight into the limitations of AI algorithms (generalization, AI ethics, labeled data to name a few). Continue reading the full interview for a detailed perspective. On why TensorFlow 2 upgrade is paradigm-shifting in more ways than one TensorFlow 2 was released last month. What are some of your top features in TensorFlow 2.0? How do you think it has upgraded the machine learning ecosystem? TF 2.0 is a major upgrade from its predecessor in many ways. It addressed many of the shortcomings of TF 1.x and with this release, the difference between Pytorch and TF has narrowed. One of the biggest paradigm shifts in TF 2.0 is eager execution by default. This means you don’t have to pre-define a static computation graph, create sessions, deal with the unintuitive interface or have painful experience in debugging your deep learning model code. However, you lose on some performance in run time when you switch to complete eager mode. For that purpose, they have introduced tf.function decorator which can help you translate your Python functions to Tensorflow graphs. This way you can retain both code readability and ease of debugging while getting the performance of TensorFlow graphs.  Another major update is that many confusing redundancies have been consolidated and many functions are now integrated with Keras API. This will help to standardize the communication of data/models among various components of TensorFlow ecosystem. TF 2.0 also comes with backward compatibility to TF 1.X with an easy optional way to convert your TF 1.X code into TF 2.0. TF 1.X suffered from a lack of standardization in how we load/save trained machine learning models. TF 2.0 fixed this by defining a single API SavedModels. As SavedModels is integrated with the Tensorflow ecosystem, it becomes much easier to deploy models using Tensorflow Lite, Tensorflow.js to other devices/applications.   With the onset of TensorFlow 2, Tensorflow and Keras are integrated into one module (tf.keras). TF 2.0 now delivers Keras as the central high-level API used to build and train models. What is the future/benefits of TensorFlow + Keras?  Keras has been a very popular high-level API for faster prototyping and production and even for research. As the field of AI/ML is in nascent stages, ease of development can have a huge impact for people getting started in machine learning.  Previously, a developer new to machine learning started from Keras while an experienced researcher used only Tensorflow 1.x due to its flexibility to build custom models. With Keras integrated as a high level API for TF 2.0, we can expect both beginners and experts working on the same framework which can lead to better collaboration and better exchange of ideas in the community.  Additionally, a single high level easy to use API reduces confusion and streamlines consistency across use cases of production and research.  Overall, I think it’s a great step in the right direction by Google which will enable more developers to hop on the Tensorflow ecosystem.  On TensorFlow, NLP and structured learning Recently, Transformers 2.0, a popular OS NLP library, was released that provides TF 2.0 and PyTorch deep interoperability. What are your views on this development? One of the areas where deep learning has made an immense impact is Natural Language Processing (NLP). Research in NLP is moving very fast and it is hard to keep up with all the papers and code releases by various research groups around the world.  Hugging Face, the company behind the library “Transformers” has really eased the usage of state of the art (SOTA) models and process of building new models by simplifying the preprocessing and model building pipeline through an easy to use Keras like interface. “Transformers 2.0” is the recent release from the company and the most important feature is the interoperability between Pytorch and TF 2.0. TF 2.0 is more production-ready while Pytorch is more oriented towards research. With this upgrade, you can pretty much move from one framework to another for training, validation, and deployment of the model.  Interoperability between frameworks is very important for the AI community as it enables development velocity. Moreover, as none of the frameworks can be perfect at everything, it makes the framework developers focus more on their strengths and make those features seamless. This will create greater efficiency going forward. Overall, I think this is a great development and I expect other libraries in domains like Computer Vision, Graph Learning etc. to follow suit. This will enable a lot more application of state of the art models to production.  Google recently launched Neural Structured Learning (NSL), an open-source Tensorflow based framework for training neural networks with graphs and structured data. What are some of the potential applications of NSL? What do you think can be some Machine Learning Projects based around NSL? Neural structured learning is a concept of learning neural network parameters with structured signals other than features. Many real-world datasets contain some structured information like Knowledge graphs or molecular graphs in biology. Incorporating these signals can lead to a more accurate and robust model. From an implementation perspective, it boils down to adding a regularizer to the loss function such that the representation of neighboring nodes in the graph is similar.  Any application where the amount of labeled data is limited but has structural information like Knowledge Graph that can be exploited is a good candidate for these types of models. A possible example could be fraud detection in online systems. Fraud data generally has sparse labels and fraudsters create multiple accounts that are connected to each other through some information like devices etc. This structured information can be utilized to learn a better representation of fraud accounts.  There can be other applications is molecular data and other problems involving the knowledge graph. On Ankit’s experience working on his book, TensorFlow Machine Learning Project Tell us the motivation behind writing your book TensorFlow Machine Learning Projects. Why is TensorFlow ideal for building ML projects? What are some of your favorite machine learning projects from this book? When I started learning Tensorflow, I stumbled upon many tutorials (including the official ones) which explained various concepts on how Tensorflow works. While that was helpful in understanding the basics, most of my learning came from building projects with Tensorflow. That is when I realized the need for a resource that teaches using a ‘learn by doing’ approach. This book is unique in the way that it teaches machine learning theory, Tensorflow utilities and programming concepts all while developing a project in which you can have fun building and is also of practical use.  My favorite chapter from the book is “Generating Uncertainty in Traffic Signs Classifier using Bayesian Neural Networks”. With the development of self-driving cars, traffic signs detection is a major problem that needs to be solved. This chapter explains an advanced AI concept of Bayesian Neural Networks and shows step by step how to use those to detect traffic signs using Tensorflow. Some of the readers of the book have started to use this concept in their practical applications already. Machine Learning challenges and advice to those developing TensorFlow models What are the biggest challenges today in the field of Machine Learning and AI? What do you see as the greatest technology disruptors in the next 5 years? While AI and machine learning has seen huge success in recent years, there are few limitations of AI algorithms as we see today. Some of the major ones are: Labeled Data: Most of the success of AI has come from supervised learning. Many of the recent supervised deep learning algorithms require huge quantities of labeled data which is expensive to obtain. For example, obtaining huge amounts of clinical trial data for healthcare prediction is very challenging. The good news is that there is some research around building good ML models using sparse data labels. Explainability: Deep learning models are essentially a “black box” where you don’t know what factor(s) led to the prediction. For some applications like money lending, disease diagnosis, fraud detection etc. the explanations of predictions become very important. Currently, we see some nascent work in this direction with LIME and SHAP libraries. Generalization: In the current state of AI, we build one model for each application. We still don’t have good generality of models from one task to another. Generalization, if solved, can lead us to truly Artificial General Intelligence (AGI). Thankfully approaches like transfer learning and meta-learning are trying to solve this challenge. Bias, Fairness, and Ethics: An output of the machine learning model is heavily based on the input training data. Many a time, training data can have biases towards particular ethnicities, classes, religions, etc. We need more solutions in this direction to build trust in AI algorithms. Overall, I feel, AI is becoming mainstream and in the next 5 years we will see many traditional industries adopt AI to solve critical business problems and achieve more automation. At the same time, tooling for AI will keep on improving which will also help in its adoption. What is your advice for those developing machine learning projects on TensorFlow? Building projects with new techniques and technologies is a hard process. It requires patience, dealing with failures and hard work. For that reason, it is very important to pick up a project that you are passionate about. This way, you will continue building even if you are stuck somewhere. The selection of the right projects is by far the most important criterion in the project-based learning method.  About the Author Ankit currently works as a Senior Research Scientist at Uber AI Labs, the machine learning research arm of Uber. His work primarily involves the application of Deep Learning methods to a variety of Uber’s problems ranging from food recommendation system, forecasting to self-driving cars.  Previously, he has worked in a variety of data science roles at Bank of America, Facebook and other startups. Additionally, he has been a featured speaker in many of the top AI conferences and universities across the US, including UC Berkeley, OReilly AI conference etc. He completed his MS from UC Berkeley and a BS from IIT Bombay (India). You can find him on Linkedin, Twitter, and GitHub. About the Book With the help of this book, TensorFlow Machine Learning Projects you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem. To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification. As you make your way through the book, you’ll build projects in various real-world domains. By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work.  
Read more
  • 0
  • 0
  • 4455

article-image-data-science-and-machine-learning-what-to-learn-in-2020
Richard Gall
19 Dec 2019
5 min read
Save for later

Data science and machine learning: what to learn in 2020

Richard Gall
19 Dec 2019
5 min read
It’s hard to keep up with the pace of change in the data science and machine learning fields. And when you’re under pressure to deliver projects, learning new skills and technologies might be the last thing on your mind. But if you don’t have at least one eye on what you need to learn next you run the risk of falling behind. In turn this means you miss out on new solutions and new opportunities to drive change: you might miss the chance to do things differently. That’s why we want to make it easy for you with this quick list of what you need to watch out for and learn in 2020. The growing TensorFlow ecosystem TensorFlow remains the most popular deep learning framework in the world. With TensorFlow 2.0 the Google-based development team behind it have attempted to rectify a number of issues and improve overall performance. Most notably, some of the problems around usability have been addressed, which should help the project’s continued growth and perhaps even lower the barrier to entry. Relatedly TensorFlow.js is proving that the wider TensorFlow ecosystem is incredibly healthy. It will be interesting to see what projects emerge in 2020 - it might even bring JavaScript web developers into the machine learning fold. Explore Packt's huge range of TensorFlow eBooks and videos on the store. PyTorch PyTorch hasn’t quite managed to topple TensorFlow from its perch, but it’s nevertheless growing quickly. Easier to use and more accessible than TensorFlow, if you want to start building deep learning systems quickly your best bet is probably to get started on PyTorch. Search PyTorch eBooks and videos on the Packt store. End-to-end data analysis on the cloud When it comes to data analysis, one of the most pressing issues is to speed up pipelines. This is, of course, notoriously difficult - even in organizations that do their best to be agile and fast, it’s not uncommon to find that their data is fragmented and diffuse, with little alignment across teams. One of the opportunities for changing this is cloud. When used effectively cloud platforms can dramatically speed up analytics pipelines and make it much easier for data scientists and analysts to deliver insights quickly. This might mean that we need increased collaboration between data professionals, engineers, and architects, but if we’re to really deliver on the data at our disposal, then this shift could be massive. Learn how to perform analytics on the cloud with Cloud Analytics with Microsoft Azure. Data science strategy and leadership While cloud might help to smooth some of the friction that exists in our organizations when it comes to data analytics, there’s no substitute for strong and clear leadership. The split between the engineering side of data and the more scientific or interpretive aspect has been noted, which means that there is going to be a real demand for people that have a strong understanding of what data can do, what it shows, and what it means in terms of action. Indeed, the article just linked to also mentions that there is likely to be an increasing need for executive level understanding. That means data scientists have the opportunity to take a more senior role inside their organizations, by either working closely with execs or even moving up to that level. Learn how to build and manage a data science team and initiative that delivers with Managing Data Science. Going back to the algorithms In the excitement about the opportunities of machine learning and artificial intelligence, it’s possible that we’ve lost sight of some of the fundamentals: the algorithms. Indeed, given the conversation around algorithmic bias, and unintended consequences it certainly makes sense to place renewed attention on the algorithms that lie right at the center of our work. Even if you’re not an experienced data analyst or data scientist, if you’re a beginner it’s just as important to dive deep into algorithms. This will give you a robust foundation for everything else you do. And while statistics and mathematics will feel a long way from the supposed sexiness of data science, carefully considering what role they play will ensure that the models you build are accurate and perform as they should. Get stuck into algorithms with Data Science Algorithms in a Week. Computer vision and natural language processing Computer vision and Natural Language Processing are two of the most exciting aspects of modern machine learning and artificial intelligence. Both can be used for analytics projects, but they also have applications in real world digital products. Indeed, with augmented reality and conversational UI becoming more and more common, businesses need to be thinking very carefully about whether this could give them an edge in how they interact with customers. These sorts of innovations can be driven from many different departments - but technologists and data professionals should be seizing the opportunity to lead the way on how innovation can transform customer relationships. For more technology eBooks and videos to help you prepare for 2020, head to the Packt store.
Read more
  • 0
  • 0
  • 6187

article-image-thomas-munro-from-enterprisedb-on-parallelism-in-postgresql
Bhagyashree R
17 Dec 2019
7 min read
Save for later

Thomas Munro from EnterpriseDB on parallelism in PostgreSQL

Bhagyashree R
17 Dec 2019
7 min read
PostgreSQL is a powerful, open-source object-relational database system. Since its introduction, it has been well-received by developers for its reliability, feature robustness, data-integrity, better licensing, and much more. However, one of its limitations has been the lack of support for parallelism, which changed in the subsequent releases. At PostgresOpen 2018, Thomas Munro, a programmer at EnterpriseDB and PostgreSQL contributor talked about how parallelism has evolved in PostgreSQL over the years. In this article, we will see some of the key parallelism-specific features that Munro discussed in his talk. [box type="shadow" align="" class="" width=""] Further Learning This article gives you a glimpse of query parallelism in PostgreSQL. If you want to explore it further along with other concepts like data replication, and database performance, check out our book Mastering PostgreSQL 11 - Second Edition by Hans-Jürgen Schönig. This second edition of Mastering PostgreSQL 11 helps you build dynamic database solutions for enterprise applications using PostgreSQL, which enables database analysts to design both the physical and technical aspects of the system architecture with ease. [/box] Evolution of parallelism in PostgreSQL PostgreSQL uses a process-based architecture instead of a thread-based one. On startup, it launches a “postmaster” process and after that creates a new process for every database session. Previously, it did not support parallelism in a single connection and each query used to run serially. The absence of “intra-query parallelism” in PostgreSQL was a huge limitation for answering the queries faster. Parallelism here means allowing a single process to have multiple threads to query the system and utilize the increasing CPU core counts. The foundation for parallelism in PostgreSQL was laid out in the 9.4 and 9.5 releases. These came with infrastructure updates like dynamic shared memory segments, shared memory queues, and background workers. PostgreSQL 9.6 was actually the first release that came with user-visible features for parallel query execution. It supported executor nodes: gather, parallel sequential scan, partial aggregate, and finalize aggregate. However, this was not enabled by default. Then in 2017, PostgreSQL 10 was released, which had parallelism enabled by default. It had a few more executor nodes including gather merge, parallel index scan, and parallel bitmap heap scan. Last year, PostgreSQL 11 came out with a couple of more executor nodes including parallel append and parallel hash join. It also introduced partition-wise joins and parallel CREATE INDEX. Key parallelism-specific features in PostgreSQL Parallel sequential scans Parallel sequential scans was the very first feature for parallel query execution. Introduced in PostgreSQL 9.6, this scan distributes blocks of a table among different processes. This assignment is done one after the other to ensure that the access to the table remains sequential. The processes that run in parallel and scan the tuples of a table are called parallel workers. There is one special worker called leader, which is responsible for coordinating and collecting the output of the scan from each of the worker. The leader may or may not participate in scanning the database depending on its load in dividing and combining processes. Parallel index scan Parallel index scan is based on the same concept as parallel sequential scan, but it involves more communication and waiting. Currently, the parallel index scans are supported only for B-Tree indexes. In a parallel index scan, index pages are scanned in parallel. Each process will scan a single index block and return all tuples referenced by that block. Meanwhile, other processes will also scan different index blocks and return the tuples. The results of a parallel B-Tree scan are then returned in sorted order. Parallel bitmap heap scan Again, this also has the same concept as the parallel sequential scan. Explaining the difference, Munro said, “You’ve got a big bitmap and you are skipping ahead to the pages that contain interesting tuples.” In parallel bitmap heap scan, one process is chosen as the leader, who performs a scan of one or more indexes and creates bitmap indicating which table blocks need to be visited. These table blocks are then divided among the worker processes as in a parallel sequential scan. Here the heap scan is done in parallel, but the underlying index scan is not. Parallel joins PostgreSQL supports all three join strategies in parallel query plans: nested loop join, hash join, or merge join. However, there is no parallelism supported in the inner loop. The entire loop is scanned as a whole, and the parallelism comes into play when each worker executes the inner loop as a whole. The results of each join are sent to gather node to produce the final results. Nested loop join: The nested loop is the most basic way for PostgreSQL to perform a join. Though it is considered to be slow, it can be efficient if the inner side is an index scan. This is because the outer tuples and hence the loops that loop up values in the index will be divided among worker processes. Merge join: The inner side is executed in full. It can be inefficient when sort needs to be performed because the work and resulting data are duplicated in every cooperating process. Hash join: In this join as well, the inner side is executed in full by every worker process to build identical copies of the hash table. It is inefficient in cases when the hash table is large or the plan is expensive. However, in parallel hash join, the inner side is a parallel hash that divides the work of building a shared hash table over the cooperating processes. This is the only join in which we can have parallelism on both sides. Partition-wise join Partition-wise join is a new feature introduced in PostgreSQL 11. In partition-wise join, the planner knows that both sides of the join have matching partition schemes. Here a join between two similarly partitioned tables are broken down into joins between their matching partitions if there is an equi-join condition between the partition key of joining tables. Munro explains, “It becomes parallelizable with the advent of parallel append, which can then run different branches of that query plan in different processes. But if you do that then granularity of parallelism is partitioned, which is in some ways good and in some ways bad compared to block-based granularity.” He further adds, “It means when the last worker runs out of work to do everyone else has to wait for that before the query is finished. Whereas, if you use block-based parallelism you don’t have the problem but there are some advantages as a result of that as well.” Parallel aggregation in PostgreSQL Calculating aggregates can be very expensive and when evaluated in a single process it could take a considerable amount of time. This problem was solved in PostgreSQL 9.6 with the introduction of parallel aggregation. This is essentially a divide and conquer strategy where multiple workers calculate a part of aggregate before the final value based on these calculations is calculated by the leader. This article walked you through some of the parallelism-specific features in PostgreSQL presented by Munro in his PostgresOpen 2018 talk.  If you want to get to grips with other advanced PostgreSQL features and SQL functions, do have a look at our Mastering PostgreSQL 11 - Second Edition book by Hans-Jürgen Schönig. By the end of this book, you will be able to use your database to its utmost capacity by implementing advanced administrative tasks with ease. PostgreSQL committer Stephen Frost shares his vision for PostgreSQL version 12 and beyond Introducing PostgREST, a REST API for any PostgreSQL database written in Haskell Percona announces Percona Distribution for PostgreSQL to support open source databases 
Read more
  • 0
  • 0
  • 4246

article-image-15-things-every-bi-professional-should-know-about-tableau
Fatema Patrawala
17 Dec 2019
8 min read
Save for later

15 things every BI professional should know about Tableau

Fatema Patrawala
17 Dec 2019
8 min read
“The art and practice of visualizing data is becoming ever more important in bridging the human-computer gap to mediate analytical insight in a meaningful way.” ―Edd Dumbill Tableau is a powerful data visualization and discovery tool. It is an important part of a data analyst or data scientist’s - skill set, with many organizations specifying it as a key skill in job adverts. In this article, we’ll take a look at few things in Tableau you need to know to successfully make a mark in your business intelligence career. While architecture of traditional BI tools has hardware limitations, Tableau does not have such dependencies and it can function independently and requires minimum hardware support. Traditional tools are based on a complex set of technologies when Tableau is based on Associative Search technology making it intuitive, fast and dynamic. Tableau supports in-memory, multi-thread and multi-core computing and more advanced capabilities while traditional BI tools do not offer such functionalities. Various Tableau products Tableau Desktop is a self service business analytics and data visualization suite that anyone can use. With tableau desktop, you can extract massive data offline from your data warehouse for live up to date data analysis. Tableau Online / Tableau Server is an online hosting platform designed for enterprise users. It lets users working on Tableau publish and share dashboards across organization and teams. Tableau Reader is a free desktop application that enables you to open and view visualizations that are built in Tableau Desktop. Tableau Public is a free Tableau software which you can use to make visualizations but you will need to save your workbook or worksheets in the Tableau Server for anyone else to view them. Different data types in Tableau All fields in a data source have a data type. The data type reflects the kind of information stored in that field, for example integers (410), dates (1/23/2015) and strings (“Wisconsin”). The data type of a field is identified in the Data pane by one of the icons shown below. Data type icons in Tableau Icon Data type Text (string) values Date values Date & Time values Numerical values Boolean values (relational only) for example True/False Geographic values (used with maps) Cluster Group   Source: Tableau website Measures and Dimensions in Tableau Measures contain numeric, quantitative values that you can measure. Measures can be aggregated. When you drag a measure into the view, Tableau applies an aggregation to that measure (by default). Dimensions, on the other hand, contain qualitative values (such as names, dates, or geographical data). You can use dimensions to categorize, segment, and reveal the details in your data. Dimensions affect the level of detail in the view. Ways to connect data in Tableau We can either connect live to your data set or extract data into Tableau. Live: Connecting live to a data set leverages its computational processing and storage. New queries will go to the database and will be reflected as new or updated within the data. Extract: The Extract API allows you to programmatically extract and combine any data sources for use in Tableau. There can be multiple data source connections to different sources in the same workbook. Each connection will show up under the Data tab on the left sidebar. The benefit of Tableau extract over live connection is that extract can be used anywhere without any connection and you can build your own visualization without connecting to database. You can read a complete section on how to extract data in Tableau from this book, Learning Tableau 2019 - Third Edition, written by Joshua Milligan. This book takes you through the foundations of the Tableau 2019 paradigm to the advanced topics.  Joins and Blends in Tableau Joining tables and blending data sources are two different ways to link related data together in Tableau. Joins are performed to link tables of data together on a row-by-row basis. Blends are performed to link together multiple data sources at an aggregate level.  Different filters in Tableau and different use cases in which these filters are more relevant than others In Tableau, filters are used to restrict the data from database. Often, you will want to filter data in Tableau in order to perform an analysis on a subset of data, narrow your focus, or drill into detail. Tableau offers multiple ways to filter data. If you want to limit the scope of your analysis to a subset of data, you can filter the data at the source using one of the following techniques: Data Source Filters are applied before all other filters and are useful when you want to limit your analysis to a subset of data. These filters are applied before any other filters. Extract Filters limit the data that is stored in an extract (.tde or .hyper). Data source filters are often converted into extract filters if they are present when you extract the data. Custom SQL Filters can be accomplished using a live connection with custom SQL, which has a Tableau parameter in the WHERE clause.    Dual axis in Tableau Dual Axis is an excellent phenomenon supported by Tableau that helps users view two scales of two measures in the same graph. Many websites like Indeed.com and other make use of dual axis to show the comparison between two measures and their growth rate in a septic set of years. Dual axis let you compare multiple measures at once, having two independent axis layered on top of one another.  Key components of a Tableau Dashboard Horizontal – Horizontal layout containers allow the designer to group worksheets and dashboard components left to right across your page and edit the height of all elements at once. Vertical – Vertical containers allow the user to group worksheets and dashboard components top to bottom down your page and edit the width of all elements at once. Text – All textual fields. Image Extract  – A Tableau workbook is in XML format. In order to extract images, Tableau applies some codes to extract an image which can be stored in XML. Web [URL ACTION] – A URL action is a hyperlink that points to a Web page, file, or other web-based resource outside of Tableau. You can use URL actions to link to more information about your data that may be hosted outside of your data source. To make the link relevant to your data, you can substitute field values of a selection into the URL as parameters. If you want to learn how to design dashboards in Tableau, this book Learning Tableau 2019, will give you a step by step process for designing dashboards.  Why automate reports in Tableau Once you have automated reporting, you’ll have time to spend on innovative projects. What can be done manually could be performed by automation, delivering the same results in a fraction of the time. Reducing such a time-consuming and repetitive task will make you more productive, and more efficient.  What is story in Tableau? Why would create a story and what are they used for? A story is a sheet that contains a sequence of worksheets or dashboards that work together to convey information. You can create stories to show how facts are connected, provide context, demonstrate how decisions relate to outcomes, or simply make a compelling case. Each individual sheet in a story is called a story point. The primary objective of creating stories in Tableau is to communicate data to a certain audience with an intended result.  How can you create stories in Tableau? There is a feature in Tableau named as Stories that allows you to tell a story using interactive snapshots of dashboards and views. The snapshots become points in a story. This allows you to construct guided narrative or even an entire presentation. Read this chapter, ‘Telling a Data Story with Dashboards’ from this book, Learning Tableau 2019, to create insightful dashboards in Tableau.    How to embed views into Webpages? You can embed interactive Tableau views and dashboards into web pages, blogs, wiki pages, web applications, and intranet portals. Embedded views update as the underlying data changes, or as their workbooks are updated on Tableau Server. Embedded views follow the same licensing and permission restrictions used on Tableau Server. That is, to see a Tableau view that’s embedded in a web page, the person accessing the view must also have an account on Tableau Server. Alternatively, if your organization uses a core-based license on Tableau Server, a Guest account is available. This allows people in your organization to view and interact with Tableau views embedded in web pages without having to sign in to the server. Contact your server or site administrator to find out if the Guest user is enabled for the site you publish to.  What is Tableau Prep? Can we clean messy data with Tableau? Tableau Prep extends the Tableau platform with robust options for cleaning and structuring data for analysis in Tableau. In the same way that Tableau Desktop provides a hands-on, visual experience for visualizing and analyzing data, Tableau Prep provides a hands-on, visual experience for cleaning and shaping data. If you wish to know more about Tableau Prep or how to clean messy data to create powerful data visualizations and unlock intelligent business insights, read this book Learning Tableau 2019, written by Joshua N. Milligan. ‘Tableau Day’ highlights: Augmented Analytics, Tableau Prep Builder and Conductor, and more! Alteryx vs. Tableau: Choosing the right data analytics tool for your business How to do data storytelling well with Tableau [Video]
Read more
  • 0
  • 0
  • 10052

article-image-artificial-intelligence-data-science-and-big-data-in-2019-what-really-mattered
Richard Gall
16 Dec 2019
6 min read
Save for later

Artificial intelligence, data science, and big data in 2019: what really mattered

Richard Gall
16 Dec 2019
6 min read
The techlash hasn’t died down - it’s just become normalized. Barely a day passes without a new scandal emerging, from questionable surveillance to racist AI algorithms. But it hasn’t all been bad: while negatives get a lot of attention (and so they should - the consequences of tech can be lethal, both societally and literally), there was still plenty to get excited about. And for those working in the data profession - as analysts, scientists, and engineers, there were several important trends that really helped to define where we are now from a purely practical perspective - as well as hinting at where we might go in the future. With just a few weeks left to go of the year (and the decade!), let’s look at some of the key things that defined this year in the field of data science and data engineering. The growth of PyTorch TensorFlow is undoubtedly the most popular deep learning framework. You might even say that its role in popularizing deep learning and artificial intelligence has been understated. But while TensorFlow has held its place for some time, 2019 was the year when things started to change. Look, for example at this Google Trends graph (and yes, I know it’s not in any way scientific): As you can see TensorFlow hit its stride pretty early on. It’s only in the last 12 months or so that PyTorch has been narrowing the gap. One of the reasons for this is the fact that PyTorch 1.0 was released at the end of last year. This has been the foundation that has spurred its growth over the last 12 months, effectively announcing its ‘official’ arrival on the scene. With Facebook (PyTorch’s creator) building on this foundation throughout the year with a few small but important releases. PyTorch 1.3, for example, which was released at the PyTorch Developer Conference in October, included a number of ‘experimental’ new features, including named tensors and PyTorch Mobile. Another reason for PyTorch’s growth this year is that it is finding traction in the research field. This article provides some hard data that proves that PyTorch is starting to grow in this area, citing the tool’s comparable simplicity, API and performance as the reasons that it’s undermining TensorFlow’s utter dominance of the field. Find our PyTorch bundle, and other data bundles, here. Grab 5 titles for just $25. TensorFlow 2.0 While PyTorch has grown significantly in 2019, TensorFlow is nevertheless still holding its place at the top of the deep learning rankings. And TensorFlow 2.0 has undoubtedly cemented its position. With the alpha release getting developers excited since March, the full launch of 2.0 marked an important milestone for the project. The key difference between TensorFlow 2.0 and 1.0 is ultimately accessibility and ease of use. Despite its massive popularity, TensorFlow 1.0 always had a reputation for being a little more difficult to use than many other deep learning tools. The team were clearly aware of this and have done a lot to make life easier for TensorFlow developers. “With tight integration of Keras into TensorFlow, eager execution by default, and Pythonic function execution,” the team write in the release notes, “TensorFlow 2.0 makes the experience of developing applications as familiar as possible for Python developers.” When placed alongside the exciting development of PyTorch, it’s clear that these two tools are going to be defining deep learning in the year - or years - to come. Get up to date with what's new in TensorFlow 2.0 with TensorFlow 2.0 Quick Start Guide. Stream processing with Kafka, Flink, and others Dealing with large quantities of data in real-time is now the cutting-edge of big data. It’s for this reason that this year we’ve started to see stream processing gain headway in the mainstream. Although it’s been an important technique for organizations with data-intensive needs, the use of cloud and hybrid solutions - as well as an overall awareness of the opportunities of real-time data - has become truly mainstream. In turn, this is giving new prominence to a range of stream-processing platforms. Kafka, Spark, and Flink are just three of the most well-known names in this space, but the market is undoubtedly growing. Another key driver here is Nvidia - as one of the leading hardware companies, it deserves a lot of credit for helping to make massive processing power accessible to organizations that wouldn’t have had a chance just a few years ago. With CUDA, Nvidia’s parallel programming paradigm for GPUs, the company is helping all sorts of users to leverage stream processing in different ways. Get started with Apache Kafka with Apache Kafka Quick Start Guide. Data analysis on the cloud Although I've already mentioned how influential TensorFlow was in popularizing deep learning, today public cloud is going even further. It’s making artificial intelligence and analytics accessible to new roles (thinking here about tools like Azure Machine Learning Studio and Amazon SageMaker), as well as making it easier to build and deploy machine learning models in applications and products. In recent weeks, Microsoft has made another step in its bid to eat into AWS’s market share with Azure Synapse. Essentially a next generation Azure SQL Warehouse, Synapse is designed to bridge the gap between data lake and data warehouse - so, offering massive scale, and improving analytical speed. It will be interesting to see how this plays with the wider market. AWS might respond with something similar - but the onus remains on Microsoft to shift mindshare; AWS will want to consolidate its powerful position. Security It would be wrong to suggest that security is a new issue in the world of data engineering and analytics. But in 2019 it’s become almost impossible to think about the two domains as separate from one another. This cuts two different ways: on the one hand the emphasis on securing data and protecting privacy has never been greater. On the other hand, artificial intelligence and machine learning have started to play a critical part in the way that we monitor and identify threats to our systems. To a certain extent this expresses the double bind that data poses: the amount of data at our disposal is a nightmare from a governance and architectural perspective, but it is, at the same time, a way of mitigating that very nightmare. All in all, then, a bit of a vicious cycle, but nevertheless a reminder that however big our data gets, and however much we try to automate, there will always be a need for humans to think creatively and strategically about how we actually go about solving problems. Explore Packt's security bundles now. For more technology eBooks and videos to prepare you for 2020, head to the Packt store.
Read more
  • 0
  • 0
  • 4548

article-image-mongodbs-cto-eliot-horowitz-on-whats-new-in-mongodb-4-2-ops-manager-atlas-and-more
Bhagyashree R
13 Dec 2019
9 min read
Save for later

MongoDB’s CTO Eliot Horowitz on what’s new in MongoDB 4.2, Ops Manager, Atlas, and more

Bhagyashree R
13 Dec 2019
9 min read
At MongoDB.local London event that happened in September this year, Eliot Horowitz, the CTO and Co-Founder of MongoDB took to the stage to talk about the latest features in MongoDB 4.2. He also discussed the updates to Ops Manager and MongoDB Atlas, and new cloud services including integrated full-text search, the Realm development platform, and MongoDB Data Lake. MongoDB.local is a one-day educational conference that brings together people who develop MongoDB and its ecosystem, as well as fellow MongoDB users. This is where you can get a deeper knowledge of the latest in MongoDB, tools, and best practices directly from the MongoDB experts. [box type="shadow" align="" class="" width=""] Further Learning This article lists the various features that have landed in MongoDB 4.2. To get a practical understanding of administering database applications both on-premises and on the cloud, check out our book Mastering MongoDB 4.x - Second Edition by Alex Giamas. [/box] Exciting features in MongoDB 4.2 Distributed transactions MongoDB 4.0 came with support for multi-document transactions on replica sets. This support was extended in MongoDB 4.2 by introducing distributed transactions. These add support for multi-document transactions on sharded clusters and also include the existing support for multi-document transactions on replica sets. Distributed transactions have the same syntax and semantics as the replica set transactions. They are fully ACID compliant and have conversational syntax. Another important update is that there is now no limit to how big a transaction can be. “It is just a matter of how much hardware you have and what the hardware can handle,” Horowitz adds. Also, previously the sharding system did not allow changing the shard key as it often meant moving a document from one shard to another. Starting with MongoDB 4.2, you are allowed to change the shard key and that too very easily. Now, if you change the value of a shard key and a document is required to be moved from one shard to another, MongoDB will automatically wrap that update behind the scenes inside of a transaction. This is one step towards ensuring that there is no “difference between a sharded MongoDB cluster and a replica set,” Horowitz shared. Another function that Horowitz talked about was global cluster locale reassignment. For instance, suppose you have geo zone sharding with some data residing in Europe and some other data in the US. When the users move, you can just change the value of their location field and that data will be automatically moved from Europe to the US using a transaction. Retryable reads and writes Retryable reads and writes enable the MongoDB drivers to automatically retry certain transactions if they encounter network errors or if they were not able to find a healthy primary in the replica sets or sharded cluster. Starting with MongoDB 4.2, this feature is enabled by default. One of the main goals of this feature is ensuring that whenever there is some change in the infrastructure whether it is for planned maintenance or know crashes, the application code shouldn’t care or be affected. Explaining through an example, he shared, “You have got a web page that does 20 different database operations. Rather than having to reload the entire thing, rather than having to wrap the entire web page in some sort of loop the driver under the covers can just say this I am going to retry this operation.” He adds, “So if a write fails it will retry that write automatically and will have a contract with the server to guarantee that every write happens once and only once.” Much more expressive updates MongoDB’s query language is now much richer and expressive with the support for aggregations and other modern use-cases including geo-based search, graph search, and text search. You can do things like sums, handle arrays, and other math directly through an update statement. “Let’s imagine you’ve got a document and all you want to do is to set the value of A to the value of B+C in every document. Previously, you couldn’t do that and now you can do very simple arithmetic in MongoDB.” On-demand materialized views The MongoDB aggregation pipeline, a framework for data aggregation, consists of stages. Each stage is responsible for transforming a document as they pass through the pipeline. MongoDB 4.2 introduces a new stage called ‘$merge’ that allows you to create collections based on aggregation and update those created collections efficiently. The $out stage already allows creating collections based on an aggregation. It takes the results of an aggregation and puts it into a new collection. But the difference is that it replaces the collections entire contents with the new results. As it regenerates the entire collection every time, it ends up consuming a lot of CPU and IO. The new $merge feature can incorporate the pipeline results into an existing output collection rather than fully replacing the collection. This enables users to create on-demand materialized views, where the content of the output collection is perennially updated “maybe every minute, every hour, or maybe every day depending on the use case.” Wildcard indexes In MongoDB 4.2, we have wildcard indexes that let you index an entire document or a subset of a document. It is introduced to support queries against unknown or arbitrary fields. Horowitz explains, “Previously, you were required to either add an index for every attribute you care about or put these into an array...With wild card indexes, you can actually just say “hey index the entire document or index this entire subset of the document.” What will happen is we will actually index everything in there so you can just do any query that you want.” However, keep in mind that wildcard indexes are not really designed to replace workload-based index planning. It is suitable for cases when you have polymorphic patterns in your data. Examples of data containing polymorphic pattern include product catalogs, e-commerce, social data, and IoT applications. Modern operations Along with offering such great features, it is also important for a database to provide developers a great operational experience. It should have great availability, a powerful monitoring and alerting system, backup, self-service, and APIs. To manage MongoDB we have two options: MongoDB Ops Manager and MongoDB Atlas. MongoDB Ops Manager MongoDB Ops Manager is the “best way to run MongoDB on-premises.” Its backup system offers great features such as point-in-time restore and queryable snapshots. In previous versions, however, it was a complex system and in many cases expensive to run. Starting with MongoDB 4.2, it was completely overhauled to be much simpler. Now, there is no concept of “heads.” This release also introduces a new Kubernetes operator for Ops Manager. On-premise users are moving to private cloud and for that, they mainly rely on Kubernetes. This is why you now have the Kubernetes operator for Ops Manager. It will enable you to directly control the Ops Manager through your Kubernetes interfaces. MongoDB Atlas MongoDB Atlas is a fully-managed MongoDB as a service. It now has integration with Terraform, a tool used for building, changing, and versioning infrastructure. There is also a new feature called Atlas Auto Scaling for fully-automated capacity management. Once you enable the feature, Atlas will monitor resource utilization metrics in real-time and automatically scale up or down your VM. In terms of security, MongoDB Atlas is now ISO 27001 certified and PCI compliant. It also supports field-level encryption (FLE) beta. This enables applications to encrypt fields in documents before transmitting data to the server. This encryption happens on the client-side and is completely transparent to the developers. Another key update in this release is the introduction of MongoDB Atlas Full-Text Search (Beta). Atlas now has a rich-text search functionality against your fully managed MongoDB databases. Horowitz explains, “Today, you typically have to take in MongoDB and synchronize it to some other system (such as Elasticsearch) and under those systems is Apache Lucene.” The team decided to remove this “middleman” to let users go “straight from MongoDB to Lucene.” Horowitz also talked about MongoDB Atlas Data Lake that enables you to quickly query data in any format on Amazon S3 using the MongoDB Query Language (MQL). It lets you run regular MongoDB queries against data in Amazon S3. It supports any file format including JSON, BSON, CSV, TSV, Avro, and Parquet formats. MongoDB Realm In May this year, MongoDB acquired Realm, a database for mobile applications. Horowitz gave some insight into what future plans he has for Realm. “MongoDB is investing in a lot of the things that Realm users have been asking for a long time or taking a lot of the resources we have and making sure that we can accelerate the core realm roadmap as fast as possible.” Among the new features that RealmDB will get are new data types for unstructured data such as Dicts, Sets, Any/Mixed type for polymorphic data. It will have cascading deletes, inheritance, analytics and transformational queries, support for more platforms. Horowitz plans to integrate Realm more tightly with MongoDB and together they will be called MongoDB Realm.  It will be “the best way to build data-intensive applications anywhere.” This article walked you through the new features in MongoDB 4.2, Ops Manager, Atlas, and much more presented by Eliot Horowitz in his MongoDB.local talk. Check out our book Mastering MongoDB 4.x - Second Edition by Alex Giamas to become a successful MongoDB expert.  This book dives into niche areas of managing databases (such as modeling and querying databases) along with various administration techniques in MongoDB, and much more. MongoDB is partnering with Alibaba Homebrew removes MongoDB from core formulas MongoDB withdraws controversial Server Side Public License from the Open Source Initiative’s approval process
Read more
  • 0
  • 0
  • 5082
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-new-qgis-3d-capabilities-and-future-plans-presented-by-martin-dobias-a-core-qgis-developer
Bhagyashree R
13 Dec 2019
8 min read
Save for later

New QGIS 3D capabilities and future plans presented by Martin Dobias, a core QGIS developer

Bhagyashree R
13 Dec 2019
8 min read
In his talk titled QGIS 3D: current state and future at FOSS4G 2019, Martin Dobias, CTO of Lutra Consulting talked about the new features in QGIS 3D. He also shared a list of features that can be added to QGIS 3D to make 3D rendering in QGIS more powerful. Free and Open Source Software for Geospatial (FOSS4G) 2019 was a five-day event that happened from Aug 26-30 at Bucharest. FOSS4G is a conference where geospatial professionals, students, professors come together to discuss about free and open-source software for geospatial storage, processing, and visualization. [box type="shadow" align="" class="" width=""] Further Learning This article explores the new features in QGIS 3D native rendering support. If you are embarking on your QGIS journey, check out our book Learn QGIS - Fourth Edition by Andrew Cutts and Anita Graser. In this book, you will explore QGIS user interface, load your data, edit, and then create data. QGIS often surprises new users with its mapping capabilities; you will discover how easily you can style and create your first map. But that’s not all! In the final part of the book, you’ll learn about spatial analysis, powerful tools in QGIS, and conclude by looking at Python processing options. [/box] 3D visualization in QGIS QGIS 3D native rendering support was introduced in QGIS 3. Prior to that, developers had to rely on third-party tools like NVIZ from GRASS GIS, GVIZ, Globe plugin, Qgis2threejs plugin, and more. Though these worked, “the integration was never great with the rest of QGIS,” remarks Dobias. In 2017, the QGIS grand proposal was accepted to start the initial work on QGIS 3D. A year later, QGIS 3 was announced with an interactive, fully integrated interface for you to work in 3D. QGIS 3 has a separate interface dedicated to 3D data visualization called 3D map view, which you can access from the View context menu. After you select this option, a new window will open that you can dock to the main panel. In the new window you will see all the layers that are visible in the main map view and rendered digital elevation and vector data in 3D. With native QGIS 3D support you can render raster, vector, and mesh layers. It also provides various methods for visualizing and styling the 3D data depending on the data or geometry type. Here are some of the features that Dobias talked about: Point-based rendering Starting with QGIS 3, you have three ways to render points: Basic symbols: You can use symbols such as spheres, cylinders, boxes, or cubes, apply a color, and apply a few transformations. 3D models loaded from a file: You can use the Open Asset Import Library (Assimp) to load the 3D models. This library allows you to import and export a wide-range of 3D model file formats including Collada, Wavefront, and more. After loading the model you can do tweaks like changing the color. However, there are currently limitations like “you can only change the color of the whole model and not the individual components,” Dobias mentioned. Billboard rendering: This feature was contributed by Ismail Sunni as a part of the Google Summer of Code (GSoC) 2019 project, QGIS 3D Improvement. The billboard support, which was released in QGIS 3.10, will allow you to render points as a billboard in 3D map view. Line rendering For line rendering, you have two options: Simple lines: In this approach, you define the width of a line in pixels and it does not change when you zoom-in or zoom-out. This technique preserves Z coordinates. Buffered lines: In this approach, you define the line width in map units. So, as soon as you start zooming in the line will appear zoomed out. Buffered rendering ignores z-coordinates. Polygon rendering For polygon rendering, you have four different options: Planar 3D entity: QGIS 3 provides a method to draw polygon geometries as planar polygons. Extrusion: Extrusion is a way to create 3D symbology from 2D features by stretching it vertically. QGIS now supports extruding a planar polygon to make it look like a box. You can specify a constant height or you can write an expression that determines it. Polyhedral surfaces or PolygonZ: QGIS 3 has a provision for creating polyhedral surfaces. Polyhedron is simply a three-dimensional solid which consists of a collection of polygons, usually joined at their edges. Triangular mesh or MultiPatch: It is similar to polyhedral surfaces, the only difference is that it consists of individual triangles. 3D map tools Navigation: You can use mouse and keyboard to navigate the map. Now, with the latest QGIS release you can also perform navigation using on-screen controls. Dobias said, “This is good for beginners when they are not completely sure about other means of moving the map.” Identify tool: With this tool, you can interact with the map canvas and get information on features in a pop-up window. It works exactly like its 2D counterpart, the only difference being it will be on a 3D entity. Measurement tool: This tool was also built as part of the GSoC project. This will enable you to measure real distances between given points. Other 3D capabilities Print layout support QGIS already had support to save the 3D map view as an image file, but for print layouts you needed to perform multiple steps. You had to first save 3D scene images and then embed them within print layouts. Also, the resolution of the saved images was limited to the size of the 3D window. To simplify the use of 3D scenes for printing and allow high resolution scene exports, QGIS 3 supports a new type of layout item that is capable of high resolution exports of 3D map scenes. Camera animation support With the QGIS 3D support, now users can define keyframes on a timeline with camera positions and view directions for various points in time. The 3D engine will interpolate camera parameters between keyframes to create animations. These resulting animations can then be played within the 3D view or exported frame-by-frame to a series of images. Configuration of lights By default, the 3D view has a single white light placed above the centre of the 3D scene. Now, users can set up light source position, color, and intensity and even define multiple lights for some interesting effects. Rule-based 3D rendering Previously, it was only possible to define one 3D renderer per layer meaning all features appear the same. QGIS 3 features rule-based rendering for 3D to make it much easier to apply more complex styling in 3D without having to duplicate vector layers and apply filters. There are many other 3D capabilities that you can explore including terrain shading, better camera control, and more. Where you can find data for 3D maps Dobias shared a few great 3D city models that are free to use including CityGML and CityJSON. To easily load CityJSON datasets in QGIS you can use the CityJSON Loader plugin. OpenStreetMap (OSM) is another project that provides buildings data. You can also use the Google dataset search. Just type CityGML in a search box and find the data you need. QGIS 3D capabilities to expect in the future Dobias further talked about the future plans for QGIS 3D. Currently, the team is working on improving support for larger 3D scenes and also make them load faster. For the far future, Dobias shared a wishlist of features that can be implemented in QGIS to make its 3D support much more powerful: Enhancing the 3D rendering performance More rendering techniques like shadows, transparency New materials to show textured objects More styles for vector layers such as lines and 3D pipes More data types such as point cloud and 3D rasters Formats support like 3D tiles, Arc SceneLayer Animation of data in scenes Profile tool Blender export Rendering of point cloud You just read about some of the latest features in QGIS 3 for 3D rendering. If you are new to QGIS and want to grasp its fundamentals, check out our book Learn QGIS - Fourth Edition by Anita Graser and Andrew Cutts. In this book, you will explore various ways to load data into QGIS, understand how to style data and present it in a map, and create maps and explore ways to expand them. You will get acquainted with the new processing toolbox in QGIS 3.4, manipulate your geospatial data and gain quality insights, and work with QGIS 3.4 in 3D. Why geospatial analysis and GIS matters more than ever today Top 7 libraries for geospatial analysis Uber’s kepler.gl, an open source toolbox for GeoSpatial Analysis
Read more
  • 0
  • 0
  • 10990

article-image-elastic-marks-its-entry-in-security-analytics-market-with-elastic-siem-and-endgame-acquisition
Bhagyashree R
13 Dec 2019
6 min read
Save for later

Elastic marks its entry in security analytics market with Elastic SIEM and Endgame acquisition

Bhagyashree R
13 Dec 2019
6 min read
For many years, Elastic Stack has served as an open-source, simple yet powerful interface for security analysts to detect and mitigate malicious behavior. However, Elastic marked its official entry into the security analytics market with Elastic SIEM in June this year. Since its initial release, Elastic SIEM has seen a number of enhancements including machine learning-based anomaly detection, maps integration, and more. To further expand its presence in the security field, Elastic in early October, completed the acquisition of Endgame, a security company focused on endpoint prevention, detection, and response. Following this acquisition, Elastic introduced the Elastic Endpoint Security solution in October to help organizations “automatically and flexibly respond to threats in real-time.” The company has also eliminated per-endpoint pricing. In this article, we will look at what is Elastic SIEM, how it fits into the Elastic Stack, its components, and how a security operations team leverages Elastic SIEM to defend its data and infrastructure against attacks. [box type="shadow" align="" class="" width=""] Further learning This is a quick overview of the Elastic Stack. To learn more check out our book, Learning Elastic Stack 7.0 - Second Edition by Pranav Shukla and Sharath Kumar M N. This book will give you a fundamental understanding of what the stack is all about, and help you use it efficiently to build powerful real-time data processing. [/box] Introducing Elastic SIEM Elastic SIEM is not a standalone product but rather builds on the existing Elastic Stack capabilities used for security analytics including search, visualizations, dashboards, alerting, machine learning features, and more. The following diagram shows how Elastic SIEM fits into the Elastic Stack: Source: Elastic The beta version of Elastic SIEM was released in June this year with Elastic Stack 7.2. It includes a new set of data integrations for security use cases and a dedicated app in Kibana. It enables users to analyze host-related and network-related security events as part of alert investigations, threat hunting, initial investigations, and triaging of events. You can access Elastic SIEM through the Elastic Cloud or by downloading its default distribution. Elastic SIEM supports the recently introduced Elastic Common Schema (ECS), a uniform way to represent data across different sources. ECS defines a common set of fields and objects to ingest data into Elasticsearch enabling users to centrally analyze information like logs, flows, and contextual data from across environments. Features of Elastic SIEM Host-related security event analysis The Hosts view shows key metrics regarding host-related security events and a set of data tables that enable interaction with the Timeline Event Viewer. For further investigation, you can drag-and-drop items of interest from the Hosts view tables to Timeline. This gives you deeper insight into hosts, unique IPs, user authentications, uncommon processes, and events. We can filter the host view with the search bar at the top. To help you search faster, SIEM provides a search experience that combines traditional text-based search with the visual query builder that’s deeply integrated with drag-and-drop throughout the SIEM app and powered by the Elastic common schema. Network-related security event analysis The Network view provides analysts the key network activity metrics and event tables. You can drag-and-drop these tables to Timeline for further investigation to get deeper insight into the source and destination IP, top DNS domains, users, transport layer security certs, and more. Starting with Elastic Stack 7.4, you have Elastic Maps integrated right into Elastic SIEM. The interactive map is created based on live data that analysts can search, filter, and explore in real-time. The map gives analysts an overview of the network traffic. They can simply hover over source and destination points to uncover more details such as hostnames and IP addresses. They can also click a hostname to go to the SIEM Host view or an IP address to open the relevant network details. This integration lets Elastic SIEM leverage geospatial analytics and search capabilities of Elastic Maps. It also uses the new point-to-point line feature to easily visualize the connections in your data. Timeline Event Viewer The Timeline Event Viewer enables security analysts to gather and store evidence of an attack. They can pin and annotate relevant events, comment on and share their findings, and do everything within Kibana. It is a collaborative workspace for investigations or threat hunting where analysts can easily drag objects of interest from Network and Hosts view for further investigation. Anomaly detection with machine learning integration Cyber attacks today have become so sophisticated that it is hard to maintain an effective defense with just a set of static rules. Looking at the importance of automated analysis and detection, Elastic integrated machine learning capabilities right into the SIEM app in 7.3. This allowed security analysts to enable and run a set of machine learning anomaly detection jobs designed to detect specific cyber attack behaviors. The detected anomalies are then displayed on the Hosts and Network views in the SIEM app. However, in Elastic SIEM 7.3, there were only three built-in anomaly detection jobs. In the latest release (7.4), Elastic has added thirteen more anomaly detection jobs some of which are anomalous network activity, anomalous process, anomalous path activity, anomalous Powershell script, and more. This machine learning integration is extensible allowing users to add their own jobs to the SIEM job group. These were some of the key features in Elastic SIEM. Check out the Elastic SIEM 7.4 release announcement to know more. Also, to get a better understanding of how Elastic SIEM works, see the webinar Hands-on with Elastic SIEM: Defending your organization with the Elastic Stack by Elastic. To get started with Elastic Stack you can check out our book Learning Elastic Stack 7.0 - Second Edition. This book will help you learn how to use Elasticsearch for distributed searching and analytics, Logstash for logging, and Kibana for data visualization.  As you work through the book, you will discover the technique of creating custom plugins using Kibana and Beats. The book also touches upon Elastic X-Pack, a useful extension for effective security and monitoring.  You’ll also find helpful tips on how to use Elastic Cloud and deploy Elastic Stack in production environments. How to push Docker images to AWS’ Elastic Container Registry(ECR) [Tutorial] Core security features of Elastic Stack are now free! Elastic Stack 6.7 releases with Elastic Maps, Elastic Update and much more!
Read more
  • 0
  • 0
  • 5286

article-image-challenge-deep-learning-sustain-current-pace-innovation-ivan-vasilev-machine-learning-engineer
Sugandha Lahoti
13 Dec 2019
8 min read
Save for later

“The challenge in Deep Learning is to sustain the current pace of innovation”, explains Ivan Vasilev, machine learning engineer

Sugandha Lahoti
13 Dec 2019
8 min read
If we talk about recent breakthroughs in the software community, machine learning and deep learning is a major contender - the usage, adoption, and experimentation of deep learning has exponentially increased. Especially in the areas of computer vision, speech, natural language processing and understanding, deep learning has made unprecedented progress. GANs, variational autoencoders and deep reinforcement learning are also creating impressive AI results. To know more about the progress of deep learning, we interviewed Ivan Vasilev, a machine learning engineer and researcher based in Bulgaria. Ivan is also the author of the book Advanced Deep Learning with Python. In this book, he teaches advanced deep learning topics like attention mechanism, meta-learning, graph neural networks, memory augmented neural networks, and more using the Python ecosystem. In this interview, he shares his experiences working on this book, compares TensorFlow and PyTorch, as well as talks about computer vision, NLP, and GANs. On why he chose Computer Vision and NLP as two major focus areas of his book Computer Vision and Natural Language processing are two popular areas where a number of developments are ongoing. In his book, Advanced Deep Learning with Python, Ivan delves deep into these two broad application areas. “One of the reasons I emphasized computer vision and NLP”, he clarifies, “is that these fields have a broad range of real-world commercial applications, which makes them interesting for a large number of people.” The other reason for focusing on Computer Vision, he says “is because of the natural (or human-driven if you wish) progress of deep learning. One of the first modern breakthroughs was in 2012, when a solution based on convolutional network won the ImageNet competition of that year with a large margin compared to any previous algorithms. Thanks in part to this impressive result, the interest in the field was renewed and brought many other advances including solving complex tasks like object detection and new generative models like generative adversarial networks. In parallel, the NLP domain saw its own wave of innovation with things like word vector embeddings and the attention mechanism.” On the ongoing battle between TensorFlow and PyTorch There are two popular machine learning frameworks that are currently at par - TensorFlow and PyTorch (Both had new releases in the past month, TensorFlow 2.0 and PyTorch 1.3). There is an ongoing debate that pitches TensorFlow and PyTorch as rivaling tech and communities. Ivan does not think there is a clear winner between the two libraries and this is why he has included them both in the book. He explains, “On the one hand, it seems that the API of PyTorch is more streamlined and the library is more popular with the academic community. On the other hand, TensorFlow seems to have better cloud support and enterprise features. In any case, developers will only benefit from the competition. For example, PyTorch has demonstrated the importance of eager execution and TensorFlow 2.0 now has much better support for eager execution to the point that it is enabled by default. In the past, TensorFlow had internal competing APIs, whereas now Keras is promoted as its main high-level API. On the other hand, PyTorch 1.3 has introduced experimental support for iOS and Android devices and quantization (computation operations with reduced precision for increased efficiency).” Using Machine Learning in the stock trading process can make markets more efficient Ivan discusses his venture into the field of financial machine learning, being the author of an ML-oriented event-based algorithmic trading library. However, financial machine learning (and stock price prediction in particular) is usually not in the focus of mainstream deep learning research. “One reason”, Ivan states, “is that the field isn’t as appealing as, say, computer vision or NLP. At first glance, it might even appear gimmicky to predict stock prices.” He adds, “Another reason is that quality training data isn’t freely available and can be quite expensive to obtain. Even if you have such data, pre-processing it in an ML-friendly way is not a straightforward process, because the noise-to-signal ratio is a lot higher compared to images or text. Additionally, the data itself could have huge volume.” “However”, he counters, “using ML in finance could have benefits, besides the obvious (getting rich by trading stocks). The participation of ML algorithms in the stock trading process can make the markets more efficient. This efficiency will make it harder for market imbalances to stay unnoticed for long periods of time. Such imbalances will be corrected early, thus preventing painful market corrections, which could otherwise lead to economic recessions.” GANs can be used for nefarious purposes, but that doesn’t warrant discarding them Ivan has also given a special emphasis to Generative adversarial networks in his book. Although extremely useful, in recent times GANs have been used to generate high-dimensional fake data that look very convincing. Many researchers and developers have raised concerns about the negative repercussions of using GANs and wondered if it is even possible to prevent and counter its misuse/abuse. Ivan acknowledges that GANs may have unintended outcomes but that shouldn’t be the sole reason to discard them. He says, “Besides great entertainment value, GANs have some very useful applications and could help us better understand the inner workings of neural networks. But as you mentioned, they can be used for nefarious purposes as well. Still, we shouldn’t discard GANs (or any algorithm with similar purpose) because of this. If only because the bad actors won’t discard them. I think the solution to this problem lies beyond the realm of deep learning. We should strive to educate the public on the possible adverse effects of these algorithms, but also to their benefits. In this way we can raise the awareness of machine learning and spark an honest debate about its role in our society.” Machine learning can have both intentional and unintentional harmful effects Awareness and Ethics go in parallel. Ethics is one of the most important topics to emerge in machine learning and artificial intelligence over the last year. Ivan agrees that the ethics and algorithmic bias in machine learning are of extreme importance. He says, “We can view the potential harmful effects of machine learning as either intentional and unintentional. For example, the bad actors I mentioned when we discussed GANs fall into the intentional category. We can limit their influence by striving to keep the cutting edge of ML research publicly available, thus denying them any unfair advantage of potentially better algorithms. Fortunately, this is largely the case now and hopefully will remain that way in the future. “ “I don't think algorithmic bias is necessarily intentional,'' he says. “Instead, I believe that it is the result of the underlying injustices in our society, which creep into ML through either skewed training datasets or unconscious bias of the researchers. Although the bias might not be intentional, we still have a responsibility to put a conscious effort to eliminate it.” Challenges in the Machine learning ecosystem “The field of ML exploded (in a good sense) a few years ago,'' says Ivan, “thanks to a combination of algorithmic and computer hardware advances. Since then, the researches have introduced new smarter and more elegant deep learning algorithms. But history has shown that AI can generate such a great hype that even the impressive achievements of the last few years could fall short of the expectations of the general public.” “So, in a broader sense, the challenge in front of ML is to sustain the current pace of innovation. In particular, current deep learning algorithms fall short in some key intelligence areas, where humans excel. For example, neural networks have a hard time learning multiple unrelated tasks. They also tend to perform better when working with unstructured data (like images), compared to structured data (like graphs).” “Another issue is that neural networks sometimes struggle to remember long-distance dependencies in sequential data. Solving these problems might require new fundamental breakthroughs, and it’s hard to give an estimation of such one time events. But even at the current level, ML can fundamentally change our society (hopefully for the better). For instance, in the next 5 to 10 years, we can see the widespread introduction of fully autonomous vehicles, which have the potential to transform our lives.” This is just a snapshot of some of the important focus areas in the deep learning ecosystem. You can check out more of Ivan’s work in his book Advanced Deep Learning with Python. In this book you will investigate and train CNN models with GPU accelerated libraries like TensorFlow and PyTorch. You will also apply deep neural networks to state-of-the-art domains like computer vision problems, NLP, GANs, and more. Author Bio Ivan Vasilev started working on the first open source Java Deep Learning library with GPU support in 2013. The library was acquired by a German company, where he continued its development. He has also worked as a machine learning engineer and researcher in the area of medical image classification and segmentation with deep neural networks. Since 2017 he has focused on financial machine learning. He is working on a Python based platform, which provides the infrastructure to rapidly experiment with different ML algorithms for algorithmic trading. You can find him on Linkedin and GitHub. Kaggle’s Rachel Tatman on what to do when applying deep learning is overkill  Brad Miro talks TensorFlow 2.0 features and how Google is using it internally François Chollet, creator of Keras on TensorFlow 2.0 and Keras integration, tricky design decisions in deep learning and more
Read more
  • 0
  • 0
  • 4354

article-image-master-the-art-of-face-swapping-with-opencv-and-python-by-sylwek-brzeczkowski-developer-at-truststamp
Vincy Davis
12 Dec 2019
8 min read
Save for later

Master the art of face swapping with OpenCV and Python by Sylwek Brzęczkowski, developer at TrustStamp

Vincy Davis
12 Dec 2019
8 min read
No discussion on image processing can be complete without talking about OpenCV. Its 2500+ algorithms, extensive documentation and sample code are considered world-class for exploring real-time computer vision. OpenCV supports a wide variety of programming languages such as C++, Python, Java, etc., and is also available on different platforms including Windows, Linux, OS X, Android, and iOS. OpenCV-Python, the Python API for OpenCV is one of the most popular libraries used to solve computer vision problems. It combines the best qualities of OpenCV, C++ API, and the Python language. The OpenCV-Python library uses Numpy, which is a highly optimized library for numerical operations with a MATLAB-style syntax. This makes it easier to integrate the Python API with other libraries that use Numpy such as SciPy and Matplotlib. This is the reason why it is used by many developers to execute different computer vision experiments. Want to know more about OpenCV with Python? [box type="shadow" align="" class="" width=""]If you are interested in developing your computer vision skills, you should definitely master the algorithms in OpenCV 4 and Python explained in our book ‘Mastering OpenCV 4 with Python’ written by Alberto Fernández Villán. This book will help you build complete projects in relation to image processing, motion detection, image segmentation, and many other tasks by exploring the deep learning Python libraries and also by learning the OpenCV deep learning capabilities.[/box] At the PyData Warsaw 2018 conference, Sylwek Brzęczkowski walked through how to implement a face swap using OpenCV and Python. Face swaps are used by apps like Snapchat to dispense various face filters. Brzęczkowski is a Python developer at TrustStamp. Steps to implement face swapping with OpenCV and Python #1 Face detection using histogram of oriented gradients (HOG) Histogram of oriented gradients (HOG) is a feature descriptor that is used to detect objects in computer vision and image processing. Brzęczkowski demonstrated the working of a HOG using square patches which when hovered over an array of images produces a histogram of oriented gradients feature vectors. These feature vectors are then passed to the classifier to generate a result having the highest matching samples. In order to implement face detection using HOG in Python, the image needs to be imported using import OpenCV. Next a frontal face detector object is created for the loaded image detector=dlib.get_frontal_face_detector(). The detector then produces the vector with the detected face. #2 Facial landmark detection aka face alignment Face landmark detection is the process of finding points of interest in an image of a human face. When dlib is used for facial landmark detection, it returns 68 unique fashion landmarks for the whole face. After the first iteration of the algorithm, the value of T equals 0. This value increases linearly such that at the end of the iteration, T gets the value 10. The image evolved at this stage produces the ‘ground truth’, which means that the iteration can stop now. Due to this working, this stage of the process is also called as face alignment. To implement this stage, Brzęczkowski showed how to add a predictor in the Python program with the values shape_predictor_68_face_landmarks.dat such that it produces a model of around 100 megabytes. This process generally takes up a long time as we tend to pick the biggest clearer image for detection. #3 Finding face border using convex hull The convex hull is a set of points defined as the smallest convex polygon, which encloses all of the points in the set. This means that for a given set of points, the convex hull is the subset of these points such that all the given points are inside the subset. To find the face border in an image, we need to change the structure a bit. The structure is first passed to the convex hull function with return points to false, this means that we get an output of indexes. Brzęczkowski then exhibited the face border in the image in blue color using the find_convex_hull.py function. #4 Approximating nonlinear operations with linear operations In a linear filtering of an image, the value of an output pixel is a linear combination of the values of the pixels. Brzęczkowski put forth the example of Affine transformation which is a type of linear mapping method and is used to preserve points, straight lines, and planes. On the other hand, a non-linear filtering produces an output which is not a linear function of its input. He then goes on to unveil both the transitions using his own image. Brzęczkowski then advised users to check the website learnOpenCV.com to learn how to create a nonlinear operation with a linear one. #5 Finding triangles in an image using Delaunay triangulation A Delaunay triangulation subdivides a set of points in a plane into triangles such that the points become vertices of the triangles. This means that this method subdivides the space or the surface into triangles in such a way that if you look at any triangle on the image, it will not have another point inside the triangle. Brzęczkowski then demonstrates how the image developed in the previous stage contained “face points from which you can identify my teeth and then create sub div to the object, insert all these points that I created or all detected.” Next, he deploys Delaunay triangulation to produce a list of two angles. This list is then used to obtain the triangles in the image. Post this step, he uses the delaunay_triangulation.py function to generate these triangles on the images. #6 Blending one face into another To recap, we started from detecting a face using HOG and finding its border using convex hull, followed it by adding mouth points to indicate specific indexes. Next, Delaunay triangulation was implemented to obtain all the triangles on the images. Next, Brzęczkowski begins the blending of images using seamless cloning. A seamless cloning combines the attributes of other cloning methods to create a unique solution to allow “sequence-independent and scarless insertion of one or more fragments of DNA into a plasmid vector.” This cloning method also provides a variety of skin colors to choose from. Brzęczkowski then explains a feature called ‘pass on edit image’ in the Poisson image editing which uses the value of the gradients instead of the identities or the values of the pixels of the image. To implement the same method in OpenCV, he further demonstrates how information like source, destination, source image destination, mask and center (which is the location where the cloned part should be placed) is required to blend the two faces. Brzęczkowski then depicts a  string of illustrations to transform his image with the images of popular artists like Jamie Foxx, Clint Eastwood, and others. #7 Stabilization using optical flow with the Lucas-Kanade method In computer vision, the Lucas-Kanade method is a widely used differential method for optical flow estimation. It assumes that the flow is essentially constant in a local neighborhood of the pixel under consideration, and solves the basic optical flow equations for all the pixels in that neighborhood, by the least-squares criterion. Thus by combining information from several nearby pixels, the Lucas–Kanade method resolves the inherent ambiguity of the optical flow equation. This method is also less sensitive to noises in an image. By using this method to implement the stabilization of the face swapped image, it is assumed that the optical flow is essentially constant in a local neighborhood of the pixel under consideration in human language. This means that “if we have a red point in the center we assume that all the points around, let's say in this example is three on three pixels we assume that all of them have the same optical flow and thanks to that assumption we have nine equations and only two unknowns.” This makes the computation fairly easy to solve. By using this assumption the optical flow works smoothly if we have the previous gray position of the image. This means that for face swapping images using OpenCV, a user needs to have details of the previous points of the image along with the current points of the image. By combining all this information, the actual point becomes a combination of the detected landmark and the predicted landmark. Thus by implementing the Lucas-Kanade method for stabilizing the image, Brzęczkowski implements a non-shaky version of his face-swapped image. Watch Brzęczkowski’s full video to see a step-by-step implementation of a face-swapping task. You can learn advanced applications like facial recognition, target tracking, or augmented reality from our book, ‘Mastering OpenCV 4 with Python’ written by Alberto Fernández Villán. This book will also help you understand the application of artificial intelligence and deep learning techniques using popular Python libraries like TensorFlow and Keras. Getting to know PyMC3, a probabilistic programming framework for Bayesian Analysis in Python How to perform exception handling in Python with ‘try, catch and finally’ Implementing color and shape-based object detection and tracking with OpenCV and CUDA [Tutorial] OpenCV 4.0 releases with experimental Vulcan, G-API module and QR-code detector among others
Read more
  • 0
  • 0
  • 8750
article-image-getting-to-know-pymc3-a-probabilistic-programming-framework-for-bayesian-analysis-in-python
Vincy Davis
11 Dec 2019
5 min read
Save for later

Getting to know PyMC3, a probabilistic programming framework for Bayesian Analysis in Python

Vincy Davis
11 Dec 2019
5 min read
Bayes' theorem, named after 18th-century British mathematician Thomas Bayes, is a mathematical formula for determining conditional probability. This theorem is used to revise or update existing predictions or theories using new or additional evidence. Bayes theorem is also used in the field of data science as it provides a rule for moving from a prior probability to a posterior probability.  In Bayesian statistics, a prior probability is the probability of an event before a new data is collected and a posterior probability is a conditional probability that is allotted after the relevant evidence is acquired. Hence, the Bayes algorithm is one of the most popular machine learning techniques in the field of data science.  In this post, we are going to discuss a specific Bayesian implementation called probabilistic programming (PP) in Python, considering that modern Bayesian statistics is mainly done by writing code. The probabilistic programming enables flexible specification of complex Bayesian statistical models, thus giving users the ability to focus more on model design, evaluation, and interpretation, and less on mathematical or computational details. Further Reading [box type="shadow" align="" class="" width=""]To know more about Bayesian data analysis techniques using PyMC3 and ArviZ, read our book ‘Bayesian Analysis with Python’, written by Osvaldo Martin. This book will help you acquire skills for a practical and computational approach towards Bayesian statistical modeling. The book also lists the best practices in Bayesian Analysis with the help of sample problems and practice exercises.[/box] A group of researchers have published a paper “Probabilistic Programming in Python using PyMC” exhibiting a primer on the use of PyMC3 for solving general Bayesian statistical inference and prediction problems. PyMC3 is a popular open-source PP framework in Python with an intuitive and powerful syntax closer to the natural syntax statisticians. The PyMC3 installation depends on several third-party Python packages which are automatically installed when installing via pip. It requires four dependencies: Theano, NumPy, SciPy, and Matplotlib. To undertake the full advantage of PyMC3, the researchers suggest, the optional dependencies Pandas and Patsy should also be installed using: pip install patsy pandas. How to use PyMC3 in probabilistic programming? In the paper, the researchers have utilized a simple Bayesian linear regression model with normal priors for the parameters. The unknown variables in the model are also assigned a prior distribution. The artificial data in the model are then simulated using NumPy’s random module, followed by the PyMC3 model to retrieve the corresponding parameters. The straightforward PyMC3 model structure is used to generate the unknown data as it is close to the statistical notation.  Firstly, the necessary components are imported from PyMC to build the required model. It is represented in the full format initially and then explained partly. The paper states, “Following instantiation of the model, the subsequent specification of the model components is performed inside a with statement: with basic_model: This creates a context manager, with our basic model as the context, that includes all statements until the indented block ends.” This means that all the PyMC3 objects introduced in the indented code block below the with statements are added to the model behind the scenes. In the absence of this context manager idiom, users would be forced to manually associate each of the variables with the basic model immediately after we create them. Also, if a user tries to create a new random variable without a with model: statement, it will cause an error due to the absence of an obvious model for the variable to be added to.  Next, to obtain posterior estimates for the unknown variables in the model, the posterior estimates are calculated analytically. The researchers have explained two approaches to obtain posterior estimates, users can choose either of them depending on the structure of the model and the goals of the analysis. The first approach is called finding the maximum a posteriori (MAP) point using optimization methods and the second approach is computing summaries based on samples drawn from the posterior distribution using Markov Chain Monte Carlo (MCMC) sampling methods. For producing a posterior analysis of the required model, PyMC3 provides plotting and summarization functions for inspecting the sampling output.  A simple posterior plot can be created using traceplot. In the traceplot, the left column consists of the smoothed histogram while the right column contains the samples of the Markov chain plotted in sequential order. In addition, the summary function of PyMC3 also provides a text-based output of common posterior statistics. You can also learn more about the practical implementation of PyMC3 and its loss functions in the book ‘Bayesian Analysis with Python’ by Packt Publishing. How Facebook data scientists use Bayesian optimization for tuning their online systems How to perform exception handling in Python with ‘try, catch and finally’ Fake Python libraries removed from PyPi when caught stealing SSH and GPG keys, reports ZDNet Netflix open-sources Metaflow, its Python framework for building and managing data science projects ActiveState adds thousands of curated Python packages to its platform
Read more
  • 0
  • 0
  • 4911

article-image-kaggles-rachel-tatman-on-what-to-do-when-applying-deep-learning-is-overkill
Vincy Davis
11 Dec 2019
8 min read
Save for later

Kaggle's Rachel Tatman on what to do when applying deep learning is overkill 

Vincy Davis
11 Dec 2019
8 min read
Deep learning, an emerging branch of machine learning, has garnered a lot of recognition in the field of technology over the last decade. It is regarded as a game-changer in AI, with distinct progress in computer vision, natural language processing (NLP), speech and other areas of machine learning. This year an Indeed survey found ‘deep learning engineer’ to be the best job in a tech position in the USA. Though deep learning has many benefits and a very appealing track record, not everybody can afford deep learning. It has some downsides like large data requirements, being excessively expensive, and has a high computing time. Below is a breakdown of Rachael Tatman’s talk “Put down the deep learning: When not to use neural networks and what to do instead” at the PyCon 2019 conference that delved into the problems with deep learning. Tatman is a data science advocate at Kaggle. Deep learning models require a very large amount of data in order to perform better than other techniques. Also, according to Tatman, just the compute of a simple image generation model in deep learning can cost around $60,000. This cost will increase with the complexity of the data models. It additionally requires expensive GPUs and hundreds of machines which will again deepen the cost to the user. Many less skilled people also find it difficult to adopt deep learning, as there is no standard theory available for learning about deep learning tools. The choice of a deep learning tool depends on the user’s knowledge of topology, training method, and other parameters. Next, deep learning also takes a lot of time for training large models. As the talk progresses, Tatman provides a list of three different types of models that can be used instead of deep learning. The three proposed models are regression-based models, tree-based models, and distance-based models.  The three proposed models instead of deep learning The most interpretable: Regression-based models The biggest advantage of a regression-based model is that it has a “well-principled” understanding of problems and provides many kinds of regression models, unlike deep learning. Users can simply work through the flowchart and decide on the best type of regression model for their data.  Some other advantages of regression models include its “fast to fit” feature. This means that it is much faster to fit when compared to a neural network, especially “if you're working with a well-optimized library the Python regression libraries tend to vary wildly so you might want to do a little bit of shopping around”. It also works well with small data as Tatman affirmed that she has worked on eight dozen data points. She added that since regression models are easy to interpret, she was able to learn many useful and interesting things from the data.  A few drawbacks of regression models are that a bit more data preparation is needed than for some other methods. They also require validation as regression models are based on strong assumptions about the distribution of the data points or the distribution of the errors.  Tatman also proclaimed that if she were to use a single machine learning model for the rest of her life, it would be a mixed-effects regression model. Mixed-effects models are extensions of linear regression models for data that are collected and summarized in groups. It is mainly used to determine the expected or mean values of the subject population. She believes, “you need to do a little bit more hands-on stuff, you need to do your validation, you probably need to do some additional data cleaning,” however, it only takes some time to do a lot of computing in less money and data. Want to know more about Regression? [box type="shadow" align="" class="" width=""]With so many benefits in regression-based models, you should definitely give Regression models a try. Read our book ‘Python Machine Learning By Example’ written by Yuxi (Hayden) Liu, to learn about regression algorithms and their evaluation. You can also master the art of building your own machine learning systems using other models such as Support Vector Machines and Text Analysis Algorithms with this example-based practical guide.[/box] The user-friendliest: Tree-based models  The next model which has the ability to replace deep learning models is called the tree-based models works that similar to a decision tree. It checks each node for a feature and depending on the value of that feature, the user can decide the path to be followed. When going down a particular path, it again checks for nodes with a feature. In this way, it works recursively to cut down a decision region into smaller chunks. Tatman also notified that developers generally opt for a forests model, instead of a tree-based model. A random forest is an ensemble model that combines many different decision trees together into a single model.  Per Tatman, “If you're in the machine learning community you might actually associate random forests with Kaggle and from 2010 to 2016, about two-thirds of all Kaggle competition winners used random forests.” On the other hand, “less than half use some form of deep learning, also random forests continue to do very well today.”  In the case of classification of data, random forests deliver better performance than logistic regression. It also does not need a lot of data cleaning or model validation. Random forests also do not require a user to convert the categorical variables, it simply undertakes the values and provides a corresponding output. It also supports many easy to use packages like XG boost, LightGBM, CatBoost, and others. In short, regression trees are the most user-friendly model, especially when doing classification. The drawbacks of trees/random forests are that they can easily overfit, it is also more sensitive to differences between datasets. It is less interpretable and requires more compute and training time when compared to regression models. Thus, tree-based models require little money but do need some data and time to train big data sets. The most lightweight: Distance-based models The last model, which according to Tatman can replace deep learning models is a common notation to group together a large group of methods like K-nearest neighbors, Gaussian Mixture models, and Support Vector machine. These models work with the basic idea that “points closer together to each other in a particular feature space are more likely to be in the same group.” The K-nearest neighbor model decides the value of a point based on the nearest majority neighbors. The Gaussian mixture models utilizes any distribution of distribution points that are a mixture of different Gaussians. The support vector model tries to be as far away from all the data points as possible. Distance-based models, particularly support vector models work very well with small data sets. They also tend to train 10 times faster than a regression model on the same data. In terms of accuracy, distance-based models lag behind other models, but in case of quick and dirty modeling, they perform better. They are good at data classification but are a little slower when compared to regression-based models. Consequently, distance-based models take very little time, requires very little money and are extremely lightweight. To conclude, Tatman says that the choice of one’s model should depend on the kind of time and money, the individual or organization possesses. Also, the most vital point to choose a model depends on its performance. Tatman adds, “based on empirical evidence right now it looks like deep learning will perform the best on a given data set given sufficient time money and compute.” Watch Tatman’s full talk for a detailed comparison of the three models. You can learn more about all the above machine learning models from our book, ‘Python Machine Learning By Example’ written by Yuxi (Hayden) Liu. The book will help you in implementing machine learning classification and regression algorithms from scratch in Python. Also, learn how to optimize the performance of a machine learning model for your application from our book. François Chollet, creator of Keras on TensorFlow 2.0 and Keras integration, tricky design decisions in Deep Learning, and more Baidu adds Paddle Lite 2.0, new development kits, EasyDL Pro, and other upgrades to its PaddlePaddle deep learning platform Why use JVM (Java Virtual Machine) for deep learning Prof. Rowel Atienza discusses the intuition behind deep learning, advances in GANs & techniques to create cutting-edge AI models Why Intel is betting on BFLOAT16 to be a game changer for deep learning training? Hint: Range trumps Precision.
Read more
  • 0
  • 0
  • 3895

article-image-why-decision-trees-are-more-flexible-than-linear-models-explains-stephen-klosterman
Guest Contributor
11 Dec 2019
7 min read
Save for later

Why decision trees are more flexible than linear models, explains Stephen Klosterman

Guest Contributor
11 Dec 2019
7 min read
This blog post will examine a hypothetical dataset of website visits and customer conversion, to illustrate how decision trees are a more flexible mathematical model than linear models such as logistic regression. Imagine you are monitoring the webpage of one of your products. You are keeping track of how many times individual customers visit this page, the total amount of time they've spent on the page across all their visits, and whether or not they bought the product. Your goal is to be able to predict, for future visitors, how likely they are to buy the product, based on the page visit data. You are considering presenting a discount, or some other kind of offer, to customers you think are likely to buy the product but haven't yet. Get to know more about decision trees and linear models! [box type="shadow" align="" class="" width=""]If you are interested in building your knowledge to prepare data for regularized logistic regression and random forest algorithms, read our book Data Science Projects with Python written by Stephen Klosterman. This book will give you practical guidance on industry-standard data analysis and machine learning tools in Python, with the help of realistic data. You will also learn how to use pandas and Matplotlib to critically examine a dataset with summary statistics and graphs and extract the insights you seek to derive. [/box] After logging the data on many customers, you visualize them and see the following, including some jitter to help see all the data points: There are several interesting patterns visible here. We see that in general, the longer someone spends on the page, the more likely they are to purchase the item. However, this effect seems to depend on the number of visits, in a complex way. Someone who visited the page once and spent at least two minutes there (i.e. two minutes per visit) seems likely to buy, at least up until 18 or so minutes. But someone who visited 10 times as much as this seems likely to buy after only 12 minutes cumulative time (1.2 minutes per visit). Additionally, there is a phenomenon of customers who spend a relatively long time (at least 18 or 19 minutes) over a relatively small number of visits (just one or two), who don't buy. Maybe they opened the page, but then walked away from their computer, and closed the page as soon as they came back. Whatever the reason, the patterns in this data set are interesting and complicated. If you want to create a predictive model of these data, you should consider the likely success of non-linear models, such as decision trees, versus linear models, such as logistic regression (for more information see chapter 3 of my book, Data Science Projects with Python). Logistic Regression as a linear model At a high level, linear models will take the feature space (the two-dimensional space where time is on the x-axis and number of visits is on the y-axis, as in the graph above), and seek to draw a straight line somewhere that creates an accurate division of the two classes of the response variable ("Bought" or "Did not buy"). Consider how likely this is to work. Where would you draw a straight line on the graph above, so that the two regions on either side of the line would primarily contain responses of only one class? It should be apparent that this is not likely to be an entirely successful task. The best you could probably do would be to draw a line that isolates non-buying customers who spent relatively little time on the page, represented by the region of dots to the left of the graph, from the blue dots representing buying customers to the right. While this would basically ignore the little group of customers to the lower right, it's probably the best you could do overall for most customers, using the straight-line approach. In fact, this is essentially what a logistic regression classifier looks like when the model is calibrated to these data. The above graph shows the regions of prediction ("Unlikely to buy" and "Likely to buy") as red or blue shading in the background. Deeper colors indicate a higher likelihood for either class. The conceptual straight-line decision boundary that divides the two regions mentioned above, would run right through the white portion of the background, where the probability of belonging to either class is very low. In other words, the model is "uncertain" about what prediction to make in this region. From the above graph, it can be seen that in addition to ignoring the small group of non-buying customers in the lower right, a straight line is also not a great model for isolating the non-buying customers on the left of the graph. While you can imagine that a curve might be able to define this boundary, a straight line cannot. Decision Trees as a non-linear model How can we do better? Enter non-linear models. Decision trees are a prime example of non-linear models. Decision trees work by dividing the data up into regions based on the "if-then" type of questions. For example, if a user spends less than three minutes over two or fewer visits, how likely are they to buy? Graphically, by asking many of these types of questions, a decision tree can divide up the feature space using little segments of vertical and horizontal lines. This approach can create a much more complex decision boundary, as shown below. It should be clear that decision trees can be used with more success, to model this data set. Given this, you would have a better model for the likelihood of customer conversion and could then proceed to design offers to increase conversion (for more information see chapter 5 of my book, Data Science Projects with Python). In conclusion, this post has shown how non-linear models, such as decision trees, can more effectively describe relationships in complex data sets than linear models, such as logistic regression. It should be noted that linear models can be extended to non-linearity by various means including feature engineering. On the other hand, non-linear models may suffer from overfitting, since they are so flexible. Nonetheless, approaches to prevent decision trees from overfitting have been formulated using ensemble models such as random forests and gradient boosted trees, which are among the most successful machine learning techniques in use today. As a final caveat, note this blog post presents a hypothetical, synthetic data set, which can be modeled almost perfectly with decision trees. Real-world data is messier, but the same principles hold. I hope you found this conceptual discussion helpful. For a more detailed explanation of how decision trees and logistic regression work "under the hood" with real-world data, and the python code for a similar hypothetical example to that shown here, check out my book Data Science Projects with Python. Author Bio Stephen Klosterman is a machine learning data scientist and the author of the book Data Science Projects with Python. He enjoys helping to frame problems in a data science context and delivering machine learning solutions that business stakeholders understand and value. His education includes a Ph.D. in biology from Harvard University, where he was an assistant teacher of the data science course. About the Book This book Data Science Projects with Python will help you understand the working and output of machine learning algorithms and gain insight into not only the predictive capabilities of the models but also their reasons for making these predictions. The book also provides detailed insight on how to build a classification model and how to conduct a financial analysis to find the optimal threshold for binary classification. This will help you with financial budgeting and operational strategy for a well-optimized usage model. At the end of this book, you will be able to confidently use various machine learning algorithms to perform detailed data analysis. Netflix open-sources Metaflow, its Python framework for building and managing data science projects What does a data science team look like? Get Ready for Open Data Science Conference 2019 in Europe and California How to learn data science: from data mining to machine learning Dr.Brandon explains Decision Trees to Jon
Read more
  • 0
  • 0
  • 8667
article-image-teaching-gans-a-few-tricks-a-bird-is-a-bird-is-a-bird-robots-holding-on-to-things-and-bots-imitating-human-behavior
Savia Lobo
11 Dec 2019
7 min read
Save for later

Teaching GANs a few tricks: a bird is a bird is a bird, robots holding on to things and bots imitating human behavior

Savia Lobo
11 Dec 2019
7 min read
Generative adversarial networks (GANs) have been at the forefront of research on generative models in the last couple of years. GANs have been used for image generation, image processing, image synthesis from captions, image editing, visual domain adaptation, data generation for visual recognition, and many other applications, often leading to state of the art results. One of the tutorials titled, ‘Generative Adversarial Networks’ conducted at the CVPR 2018 (a Conference on Computer Vision and Pattern Recognition held at Salt Lake City, USA) provides a broad overview of generative adversarial networks and how GANs can be trained to perform different purposes.  The tutorial involved various speakers sharing basic concepts, best practices of the current state-of-the-art GAN including network architectures, objective functions, other training tricks, and much more. Let us look at how GANs are trained for different use cases.  There’s more to GANs….. If you further want to explore different examples of modern GAN implementations, including CycleGAN, simGAN, DCGAN, and 2D image to 3D model generation, you can explore the book, Generative Adversarial Networks Cookbook written by Josh Kalin. The recipes given in this cookbook will help you build on a common architecture in Python, TensorFlow and Keras to explore increasingly difficult GAN architectures in an easy-to-read format. Training GANs for object detection using Adversarial Learning Xialong Wang, from Carnegie Mellon University talked about object detection in computer vision as well as from the context of taking actions in robots. He also explained how to use adversarial learning for instances beyond image generation. To train a GAN, the key idea is to find the adversarial tasks for your target tasks to improve your target by fighting against these adversarial tasks. In computer vision if your target task is to recognize a bird using object detection, one adversarial task is adding occlusions by generating a mask to accrue the bird’s head and its leg which will make it difficult for the detector to recognize. The detector will further try to conquer these difficult tasks and from then on it will become robust to Occlusions. Another adversarial task for object detection can be Deformations. Here the image can be slightly rotated to make the detection difficult.  For training robots to grasp objects, one of the adversaries would be the Shaking test. If the robot arm is stable enough the object it grasps should not fall even with a rigourous shake. Another example is snatching. If another arm can snatch easily, it means it is not completely trained to resist snatching or stealing. Wang said the CMU research team tried generating images using DCGAN on the COCO dataset. However, the images generated could not assist in training the detector as the detectors could easily detect them as false images. Next, the team generated images using Conditional GANs on COCO but these didn’t help either. Hence, the team generated hard positive examples in feed by adding real world occlusions or real world deformations to challenge the detectors. He then talked about a Standard Fast R-CNN Detector which takes an image input in the convolutional neural network language model. After taking the input, the detector extracts features for the whole image, and later you can crop the features according to the proposal bounding box. These cropped features are resized to channel (C*6*6); here 6*6 is interred spatial dimensions. These features are the object features you want to focus on and can also use them to perform classification or regression for detections. The team has added a small network in the middle that would input the extracted features and generate a mask. The mask will assist which spatial locations to chop out certain features that would make it hard for the detectors to recognize. He also shared the benchmark results of the tests using different datasets like the AlexNet, VGG16, FRCN, and so on. The ASTN and the ASDN model showed improved output over the other networks.   Understanding Generative Adversarial Imitation Learning (GAIL) for training a machine to imitate human behaviours Stefano Ermon from Stanford University explained how to use Generative modeling ideas and GAN training to imitate human behaviours in complex environments.  A lot of progress in reinforcement learning has been made with successes in playing board games such as Chess, video games, and so on. However, Reinforcement Learning has one limitation. If you want to use it to solve a new task you have to specify a cost signal / a reward signal to provide some supervision to your reinforcement learning algorithm. You also need to specify what kind of behaviors are desirable and which are not.   In a game scenario the cost signal is whether you win or you lose. However, in further complex tasks like driving an autonomous vehicles to specify a cost signal becomes difficult as there are different objective functions like going off road, not moving above the speed limit, avoiding a road crash, and much more.  The simplest method one can use is Behavioural cloning where you can use your trajectories and your demonstrations to construct a training set of states with the corresponding action that the expert took in those states. You can further use your favorite supervised learning method classification or regression if the actions are continuous. However, this has some limitations: Small errors may compound over time as the learning algorithm will make certain mistakes initially and these mistakes will lead towards never seen before states or objects. It is like a Black box approach where every decision requires initial planning. Ermon suggests an alternative to imitation could be an Inverse RL (IRL) approachHe also demonstrates the similarities between RL and IRL. For the complete demonstration, you can check out the video.  The main difference between a GAIL and GANs is that in GANs the generator is taking inputs, random noise and maps them to the neural network producing some samples for the detector. However, in GAIL, the generator is more complex as it includes two components, a policy P which you can train and an environment (Black Box simulator) that can’t be controlled. What matters is the distribution over states and actions that you encounter when you navigate the environment using the policy that can be tuned. As the environment is difficult to control, training the GAIL model is harder than the simple GANs model. On the other hand, in a GANs model, training the policy is challenging such that the discriminator goes into the direction of fooling.  However, GAIL is the easier generative modelling task because you don’t have to learn the whole thing end to end and neither do you have to come up with a large neural network that maps noise into behaviours as some part of the input is given by the environment. But it is harder to train because you don't really know how the black box works. Ermon further explains how using Generative Adversarial Imitation Learning, one can not only imitate complex behaviors, but also learn interpretable and meaningful representations of complex behavioral data, including visual demonstrations with a method named as InfoGAN, a method, built on top of GAIL.   He also explained a new framework for multi-agent imitation learning for general Markov games by integrating multi-agent RL with a suitable extension of multi-agent inverse RL. This method will generalize Generative Adversarial Imitation Learning (GAIL) in the single agent case. This method will successfully imitate complex behaviors in high-dimensional environments with multiple cooperative or competing agents. To know more about further demonstrations on GAIL, InfoGAIL, and Multi-agent GAIL, watch the complete video on YouTube. Knowing the basics isn’t enough, putting them to practice is necessary. If you want to use GANs practically and experiment with them, Generative Adversarial Networks Cookbook by Josh Kalin is your go-to guide. With this cookbook, you will work with use cases involving DCGAN, Pix2Pix, and so on. To understand these complex applications, you will take different real-world data sets and put them to use. Prof. Rowel Atienza discusses the intuition behind deep learning, advances in GANs & techniques to create cutting edge AI- models Now there is a Deepfake that can animate your face with just your voice and a picture using temporal GANs Now there’s a CycleGAN to visualize the effects of climate change. But is this enough to mobilize action?
Read more
  • 0
  • 0
  • 3324

article-image-questions-tensorflow-2-0-tf-prebuilt-binaries-tensorboard-keras-python-support
Sugandha Lahoti
10 Dec 2019
5 min read
Save for later

#AskTensorFlow: Twitterati ask questions on TensorFlow 2.0 - TF prebuilt binaries, Tensorboard, Keras, and Python support

Sugandha Lahoti
10 Dec 2019
5 min read
TensorFlow 2.0 was released recently with tighter integration with Keras, eager execution enabled by default, three times faster training performance, a cleaned-up API, and more.  TensorFlow 2.0 had a major API Cleanup. Many API symbols are removed or renamed for better consistency and clarity. It now enables eager execution by default which effectively means that your TensorFlow code runs like numpy code. Keras has been introduced as the main high-level API to enable developers to easily leverage Keras’ various model-building APIs. TensorFlow 2.0 also has the SavedModel API that allows you to save your trained Machine learning model into a language-neutral format.  In May, Paige Bailey, Product Manager (TensorFlow) and Laurence Moroney,  Developer Advocate at Google sat down to discuss frequently asked questions on TensorFlow 2.0. They talked about TensorFlow prebuilt binaries, the TF 2.0 upgrade script, Tensorflow Datasets, and Python support. Can I ask about any prebuilt binary for the RTX 2080 GPU on Ubuntu 16?  Prebuilt binaries for TensorFlow tend to be associated with a specific driver from Nvidia. If you're taking a look at any of the prebuilt binaries, take a look at what driver or what version of the driver you have supported on that specific card. It's easy for you to go to the driver vendor and download the latest version. But that may not be the one that TensorFlow is built for or the one that it supports. So, just make sure that they actually match each other.  Do my TensorFlow scripts work with TensorFlow 2.0?  Generally, TensorFlow scripts do not work with TensorFlow 2.0. But TensorFlow 2.0 has created an upgrade utility that is automatically downloaded with TensorFlow 2.0. For more information, you can check out this medium blog post that Paige and her colleague Anna created. It shows how you can upgrade script on an end file - any arbitrary Python file or even Jupyter Notebooks. It'll give you an export.txt file that shows you all of the symbol renames, the added keywords, and then some manual changes.  When will TensorFlow be supported in Python 3.7 and hence be accessed in Anaconda 3? TensorFlow has made the commitment that as of January 1, 2020, they no longer support Python 2. They are firmly committed to Python 3 and Python 3 support.  Is it possible to run Tensorboard on colabs? You can run Tensorboard on colabs and do different operations like smoothing, changing some of the values, and using the embedding visualizer directly from your collab notebook in order to understand accuracies and to be able to model performance debugging. You also don't have to specify ports which means you need not remember to have multiple tensor board instances running. Tensorboard automatically selects one that would be a good candidate.  How would you use [TensorFlow’s] feature_columns with Keras? TensorFlow's feature_columns API is quite useful for non-numerical feature processing. Feature columns are a way of getting your data efficiently into Estimators and you can use them in Keras. TensorFlow 2.0 also has a migration guide if you wanted to migrate your models from using Estimators to being more of a TensorFlow 2.0 format with Keras.   What are some simple data sets for testing and comparing different training methods for artificial neural networks? Are there any in TensorFlow 2.0? Although MNIST and Fashion-MNIST are great, TensorFlow 2.0 also has TensorFlow Datasets which provide a collection of datasets ready to use with TensorFlow. It handles downloading and preparing the data and constructing a tf.data. TensorFlow Datasets is compatible with both TensorFlow Eager mode and Graph mode. Also, you can use them with all of your deep learning and machine learning models with just a few lines of code.  What about all the web developers who are new to AI, how does TensorFlow 2.0 help them get started? With TensorFlow 2.0, the web models that you create using saved model can be deployed to TFLite, or TensorFlow.js. The Keras layers are also supported in TensorFlow.js, so it's not just for Python developers but also for JS developers or even R developers.  You can watch Paige and Lawrence answering more questions in this three-part video series available on YouTube. Some of the other  questions asked were: Is there any TensorFlow.js transfer learning example for object detection? Are you going to publish the updated version of TensorFlow from Poets tutorial from Pete Warden implementing TF2.0. TFLite 2.0 and NN-API for faster inference on Android devices equipped with NPU/DSP? Will the frozen graph generated from TF 1.x work on TF 2.0? Which is the preferred format for saving the model GOIU forward saved_model (SM) or hd5? What is the purpose of keeping Estimators and Keras as separate APIs?  If you want to quickly start with building machine learning projects with TensorFlow 2.0, read our book TensorFlow 2.0 Quick Start Guide by Tony Holdroyd. In this book, you will get acquainted with some new practices introduced in TensorFlow 2.0. You will also learn to train your own models for effective prediction, using high-level Keras API.  TensorFlow.js contributor Kai Sasaki on how TensorFlow.js eases web-based machine learning application development Introducing Spleeter, a Tensorflow based python library that extracts voice and sound from any music track. TensorFlow 2.0 released with tighter Keras integration, eager execution enabled by default, and more! Brad Miro talks TensorFlow 2.0 features and how Google is using it internally
Read more
  • 0
  • 0
  • 2431