Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Machine Learning By Example

You're reading from   Python Machine Learning By Example Unlock machine learning best practices with real-world use cases

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781835085622
Length 518 pages
Edition 4th Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Getting Started with Machine Learning and Python FREE CHAPTER 2. Building a Movie Recommendation Engine with Naïve Bayes 3. Predicting Online Ad Click-Through with Tree-Based Algorithms 4. Predicting Online Ad Click-Through with Logistic Regression 5. Predicting Stock Prices with Regression Algorithms 6. Predicting Stock Prices with Artificial Neural Networks 7. Mining the 20 Newsgroups Dataset with Text Analysis Techniques 8. Discovering Underlying Topics in the Newsgroups Dataset with Clustering and Topic Modeling 9. Recognizing Faces with Support Vector Machine 10. Machine Learning Best Practices 11. Categorizing Images of Clothing with Convolutional Neural Networks 12. Making Predictions with Sequences Using Recurrent Neural Networks 13. Advancing Language Understanding and Generation with the Transformer Models 14. Building an Image Search Engine Using CLIP: a Multimodal Approach 15. Making Decisions in Complex Environments with Reinforcement Learning 16. Other Books You May Enjoy
17. Index

Finding the separating boundary with SVM

SVM is another great classifier, which is effective in cases with high-dimensional spaces or where the number of dimensions is greater than the number of samples.

In machine learning classification, SVM finds an optimal hyperplane that best segregates observations from different classes.

A hyperplane is a plane of n - 1 dimensions that separates the n-dimensional feature space of the observations into two spaces. For example, the hyperplane in a two-dimensional feature space is a line, and in a three-dimensional feature space, the hyperplane is a surface. The optimal hyperplane is picked so that the distance from its nearest points in each space to itself is maximized, and these nearest points are the so-called support vectors.

The following toy example demonstrates what support vectors and a separating hyperplane (along with the distance margin, which I will explain later) look like in a binary classification case:

Figure...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime