Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Embedded Systems Architecture

You're reading from   Embedded Systems Architecture Design and write software for embedded devices to build safe and connected systems

Arrow left icon
Product type Paperback
Published in Jan 2023
Publisher Packt
ISBN-13 9781803239545
Length 342 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Daniele Lacamera Daniele Lacamera
Author Profile Icon Daniele Lacamera
Daniele Lacamera
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1 – Introduction to Embedded Systems Development
2. Chapter 1: Embedded Systems – A Pragmatic Approach FREE CHAPTER 3. Chapter 2: Work Environment and Workflow Optimization 4. Part 2 – Core System Architecture
5. Chapter 3: Architectural Patterns 6. Chapter 4: The Boot-Up Procedure 7. Chapter 5: Memory Management 8. Part 3 – Device Drivers and Communication Interfaces
9. Chapter 6: General-Purpose Peripherals 10. Chapter 7: Local Bus Interfaces 11. Chapter 8: Power Management and Energy Saving 12. Chapter 9: Distributed Systems and IoT Architecture 13. Part 4 – Multithreading
14. Chapter 10: Parallel Tasks and Scheduling 15. Chapter 11: Trusted Execution Environment 16. Index 17. Other Books You May Enjoy

The interrupt vector table

The interrupt vector table, often abbreviated to IVT or simply IV, is an array of pointers to functions associated by the CPU to handle specific exceptions, such as faults, system service requests from the application, and interrupt requests from peripherals. The IVT is usually located at the beginning of the binary image and thus is stored starting from the lowest address in the flash memory.

An interrupt request from a hardware component or peripheral will force the CPU to abruptly suspend the execution and execute the function at the associated position in the vector. For this reason, these functions are called interrupt service routines (or simply ISRs). Runtime exceptions and faults can be handled in the same way as hardware interrupts, so special service routines are associated with internal CPU triggers through the same table.

The order of the ISRs enumerated in the vector, and their exact positions depend on the CPU architecture, the microcontroller...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime