Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

Tech Guides - Artificial Intelligence

170 Articles
article-image-5-ways-artificial-intelligence-is-upgrading-software-engineering
Melisha Dsouza
02 Sep 2018
8 min read
Save for later

5 ways artificial intelligence is upgrading software engineering

Melisha Dsouza
02 Sep 2018
8 min read
47% of digitally mature organizations, or those that have advanced digital practices, said they have a defined AI strategy (Source: Adobe). It is estimated that  AI-enabled tools alone will generate $2.9 trillion in business value by 2021.  80% of enterprises are smartly investing in AI. The stats speak for themselves. AI clearly follows the motto “go big or go home”. This explosive growth of AI in different sectors of technology is also beginning to show its colors in software development. Shawn Drost, co-founder and lead instructor of coding boot camp ‘Hack Reactor’ says that AI still has a long way to go and is only impacting the workflow of a small portion of software engineers on a minority of projects right now. AI promises to change how organizations will conduct business and to make applications smarter. It is only logical then that software development, i.e., the way we build apps, will be impacted by AI as well. Forrester Research recently surveyed 25 application development and delivery (AD&D) teams, and respondents said AI will improve planning, development and especially testing. We can expect better software created under traditional environments. 5 areas of Software Engineering AI will transform The 5 major spheres of software development-  Software design, Software testing, GUI testing, strategic decision making, and automated code generation- are all areas where AI can help. A majority of interest in applying AI to software development is already seen in automated testing and bug detection tools. Next in line are the software design precepts, decision-making strategies, and finally automating software deployment pipelines. Let's take an in-depth look into the areas of high and medium interest of software engineering impacted by AI according to the Forrester Research report.     Source: Forbes.com #1 Software design In software engineering, planning a project and designing it from scratch need designers to apply their specialized learning and experience to come up with alternative solutions before settling on a definite solution. A designer begins with a vision of the solution, and after that retracts and forwards investigating plan changes until they reach the desired solution. Settling on the correct plan choices for each stage is a tedious and mistake-prone action for designers. Along this line, a few AI developments have demonstrated the advantages of enhancing traditional methods with intelligent specialists. The catch here is that the operator behaves like an individual partner to the client. This associate should have the capacity to offer opportune direction on the most proficient method to do design projects. For instance, take the example of AIDA- The Artificial Intelligence Design Assistant, deployed by Bookmark (a website building platform). Using AI, AIDA understands a users needs and desires and uses this knowledge to create an appropriate website for the user. It makes selections from millions of combinations to create a website style, focus, image and more that are customized for the user. In about 2 minutes, AIDA designs the first version of the website, and from that point it becomes a drag and drop operation. You can get a detailed overview of this tool on designshack. #2 Software testing Applications interact with each other through countless  APIs. They leverage legacy systems and grow in complexity everyday. Increase in complexity also leads to its fair share of challenges that can be overcome by machine-based intelligence. AI tools can be used to create test information, explore information authenticity, advancement and examination of the scope and also for test management. Artificial intelligence, trained right, can ensure the testing performed is error free. Testers freed from repetitive manual tests thus have more time to create new automated software tests with sophisticated features. Also, if software tests are repeated every time source code is modified, repeating those tests can be not only time-consuming but extremely costly. AI comes to the rescue once again by automating the testing for you! With AI automated testing, one can increase the overall scope of tests leading to an overall improvement of software quality. Take, for instance, the Functionize tool. It enables users to test fast and release faster with AI enabled cloud testing. The users just have to type a test plan in English and it will be automatically get converted into a functional test case. The tool allows one to elastically scale functional, load, and performance tests across every browser and device in the cloud. It also includes Self-healing tests that update autonomously in real-time. SapFix is another AI Hybrid tool deployed by Facebook which can automatically generate fixes for specific bugs identified by 'Sapienz'. It then proposes these fixes to engineers for approval and deployment to production.   #3 GUI testing Graphical User Interfaces (GUI) have become important in interacting with today's software. They are increasingly being used in critical systems and testing them is necessary to avert failures. With very few tools and techniques available to aid in the testing process, testing GUIs is difficult. Currently used GUI testing methods are ad hoc. They require the test designer to perform humongous tasks like manually developing test cases, identifying the conditions to check during test execution, determining when to check these conditions, and finally evaluate whether the GUI software is adequately tested. Phew! Now that is a lot of work. Also, not forgetting that if the GUI is modified after being tested, the test designer must change the test suite and perform re-testing. As a result, GUI testing today is resource intensive and it is difficult to determine if the testing is adequate. Applitools is a GUI tester tool empowered by AI. The Applitools Eyes SDK automatically tests whether visual code is functioning properly or not. Applitools enables users to test their visual code just as thoroughly as their functional UI code to ensure that the visual look of the application is as you expect it to be. Users can test how their application looks in multiple screen layouts to ensure that they all fit the design. It allows users to keep track of both the web page behaviour, as well as the look of the webpage. Users can test everything they develop from the functional behavior of their application to its visual look. #4 Using Artificial Intelligence in Strategic Decision-Making Normally, developers have to go through a long process to decide what features to include in a product. However, machine learning AI solution trained on business factors and past development projects can analyze the performance of existing applications and help both teams of engineers and business stakeholders like project managers to find solutions to maximize impact and cut risk. Normally, the transformation of business requirements into technology specifications requires a significant timeline for planning. Machine learning can help software development companies to speed up the process, deliver the product in lesser time, and increase revenue within a short span. AI canvas is a well known tool for Strategic Decision making.The canvas helps identify the key questions and feasibility challenges associated with building and deploying machine learning models in the enterprise. The AI Canvas is a simple tool that helps enterprises organize what they need to know into seven categories, namely- Prediction, Judgement, Action, Outcome, Input, Training and feedback. Clarifying these seven factors for each critical decision throughout the organization will help in identifying opportunities for AIs to either reduce costs or enhance performance.   #5 Automatic Code generation/Intelligent Programming Assistants Coding a huge project from scratch is often labour intensive and time consuming. An Intelligent AI programming assistant will reduce the workload by a great extent. To combat the issues of time and money constraints, researchers have tried to build systems that can write code before, but the problem is that these methods aren’t that good with ambiguity. Hence, a lot of details are needed about what the target program aims at doing, and writing down these details can be as much work as just writing the code. With AI, the story can be flipped. ”‘Bayou’- an A.I. based application is an Intelligent programming assistant. It began as an initiative aimed at extracting knowledge from online source code repositories like GitHub. Users can try it out at askbayou.com. Bayou follows a method called neural sketch learning. It trains an artificial neural network to recognize high-level patterns in hundreds of thousands of Java programs. It does this by creating a “sketch” for each program it reads and then associates this sketch with the “intent” that lies behind the program. This DARPA initiative aims at making programming easier and less error prone. Sounds intriguing? Now that you know how this tool works, why not try it for yourself on i-programmer.info. Summing it all up Software engineering has seen massive transformation over the past few years. AI and software intelligence tools aim to make software development easier and more reliable. According to a Forrester Research report on AI's impact on software development, automated testing and bug detection tools use AI the most to improve software development. It will be interesting to see the future developments in software engineering empowered with AI. I’m expecting faster, more efficient, more effective, and less costly software development cycles while engineers and other development personnel focus on bettering their skills to make advanced use of AI in their processes. Implementing Software Engineering Best Practices and Techniques with Apache Maven Intelligent Edge Analytics: 7 ways machine learning is driving edge computing adoption in 2018 15 millions jobs in Britain at stake with AI robots set to replace humans at workforce
Read more
  • 0
  • 0
  • 19495

article-image-8-machine-learning-best-practices
Melisha Dsouza
02 Sep 2018
9 min read
Save for later

8 Machine learning best practices [Tutorial]

Melisha Dsouza
02 Sep 2018
9 min read
Machine Learning introduces a huge potential to reduce costs and generate new revenue in an enterprise. Application of machine learning effectively helps in solving practical problems smartly within an organization. Machine learning automates tasks that would otherwise need to be performed by a live agent. It has made drastic improvements in the past few years, but many a time, a machine needs the assistance of a human to complete its task. This is why it is necessary for organizations to learn best practices in machine learning which you will learn in this article today. This article is an excerpt from a book written by Chiheb Chebbi titled Mastering Machine Learning for Penetration Testing Feature engineering in machine learning Feature engineering and feature selection are essential to every modern data science product, especially machine learning based projects. According to research, over 50% of the time spent building the model is occupied by cleaning, processing, and selecting the data required to train the model. It is your responsibility to design, represent, and select the features. Most machine learning algorithms cannot work on raw data. They are not smart enough to do so. Thus, feature engineering is needed, to transform data in its raw status into data that can be understood and consumed by algorithms. Professor Andrew Ng once said: "Coming up with features is difficult, time-consuming, requires expert knowledge. 'Applied machine learning' is basically feature engineering." Feature engineering is a process in the data preparation phase, according to the cross-industry standard process for data mining: The term Feature Engineering itself is not a formally defined term. It groups together all of the tasks for designing features to build intelligent systems. It plays an important role in the system. If you check data science competitions, I bet you have noticed that the competitors all use the same algorithms, but the winners perform the best feature engineering. If you want to enhance your data science and machine learning skills, I highly recommend that you visit and compete at www.kaggle.com: When searching for machine learning resources, you will face many different terminologies. To avoid any confusion, we need to distinguish between feature selection and feature engineering. Feature engineering transforms raw data into suitable features, while feature selection extracts necessary features from the engineered data. Featuring engineering is selecting the subset of all features, without including redundant or irrelevant features. Machine learning best practices Feature engineering enhances the performance of our machine learning system. We discuss some tips and best practices to build robust intelligent systems. Let's explore some of the best practices in the different aspects of machine learning projects. Information security datasets Data is a vital part of every machine learning model. To train models, we need to feed them datasets. While reading the earlier chapters, you will have noticed that to build an accurate and efficient machine learning model, you need a huge volume of data, even after cleaning data. Big companies with great amounts of available data use their internal datasets to build models, but small organizations, like startups, often struggle to acquire such a volume of data. International rules and regulations are making the mission harder because data privacy is an important aspect of information security. Every modern business must protect its users' data. To solve this problem, many institutions and organizations are delivering publicly available datasets, so that others can download them and build their models for educational or commercial use. Some information security datasets are as follows: The Controller Area Network (CAN) dataset for intrusion detection (OTIDS): http://ocslab.hksecurity.net/Dataset/CAN-intrusion-dataset The car-hacking dataset for intrusion detection: http://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset The web-hacking dataset for cyber criminal profiling: http://ocslab.hksecurity.net/Datasets/web-hacking-profiling The API-based malware detection system (APIMDS) dataset: http://ocslab.hksecurity.net/apimds-dataset The intrusion detection evaluation dataset (CICIDS2017): http://www.unb.ca/cic/datasets/ids-2017.html The Tor-nonTor dataset: http://www.unb.ca/cic/datasets/tor.html The Android adware and general malware dataset: http://www.unb.ca/cic/datasets/android-adware.html Use Project Jupyter The Jupyter Notebook is an open source web application used to create and share coding documents. I highly recommend it, especially for novice data scientists, for many reasons. It will give you the ability to code and visualize output directly. It is great for discovering and playing with data; exploring data is an important step to building machine learning models. Jupyter's official website is http://jupyter.org/: To install it using pip, simply type the following: python -m pip install --upgrade pip python -m pip install jupyter Speed up training with GPUs As you know, even with good feature engineering, training in machine learning is computationally expensive. The quickest way to train learning algorithms is to use graphics processing units (GPUs). Generally, though not in all cases, using GPUs is a wise decision for training models. In order to overcome CPU performance bottlenecks, the gather/scatter GPU architecture is best, performing parallel operations to speed up computing. TensorFlow supports the use of GPUs to train machine learning models. Hence, the devices are represented as strings; following is an example: "/device:GPU:0" : Your device GPU "/device:GPU:1" : 2nd GPU device on your Machine To use a GPU device in TensorFlow, you can add the following line: with tf.device('/device:GPU:0'): <What to Do Here> You can use a single GPU or multiple GPUs. Don't forget to install the CUDA toolkit, by using the following commands: Wget "http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_8.0.44-1_amd64.deb" sudo dpkg -i cuda-repo-ubuntu1604_8.0.44-1_amd64.deb sudo apt-get update sudo apt-get install cuda Install cuDNN as follows: sudo tar -xvf cudnn-8.0-linux-x64-v5.1.tgz -C /usr/local export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64" export CUDA_HOME=/usr/local/cuda Selecting models and learning curves To improve the performance of machine learning models, there are many hyper parameters to adjust. The more data that is used, the more errors that can happen. To work on these parameters, there is a method called GridSearchCV. It performs searches on predefined parameter values, through iterations. GridSearchCV uses the score() function, by default. To use it in scikit-learn, import it by using this line: from sklearn.grid_search import GridSearchCV Learning curves are used to understand the performance of a machine learning model. To use a learning curve in scikit-learn, import it to your Python project, as follows: from sklearn.learning_curve import learning_curve Machine learning architecture In the real world, data scientists do not find data to be as clean as the publicly available datasets. Real world data is stored by different means, and the data itself is shaped in different categories. Thus, machine learning practitioners need to build their own systems and pipelines to achieve their goals and train the models. A typical machine learning project respects the following architecture: Coding Good coding skills are very important to data science and machine learning. In addition to using effective linear algebra, statistics, and mathematics, data scientists should learn how to code properly. As a data scientist, you can choose from many programming languages, like Python, R, Java, and so on. Respecting coding's best practices is very helpful and highly recommended. Writing elegant, clean, and understandable code can be done through these tips: Comments are very important to understandable code. So, don't forget to comment your code, all of the time. Choose the right names for variables, functions, methods, packages, and modules. Use four spaces per indentation level. Structure your repository properly. Follow common style guidelines. If you use Python, you can follow this great aphorism, called the The Zen of Python, written by the legend, Tim Peters: "Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested. Sparse is better than dense. Readability counts. Special cases aren't special enough to break the rules. Although practicality beats purity. Errors should never pass silently. Unless explicitly silenced. In the face of ambiguity, refuse the temptation to guess. There should be one-- and preferably only one --obvious way to do it. Although that way may not be obvious at first unless you're Dutch. Now is better than never. Although never is often better than *right* now. If the implementation is hard to explain, it's a bad idea. If the implementation is easy to explain, it may be a good idea. Namespaces are one honking great idea -- let's do more of those!" Data handling Good data handling leads to successfully building machine learning projects. After loading a dataset, please make sure that all of the data has loaded properly, and that the reading process is performing correctly. After performing any operation on the dataset, check over the resulting dataset. Business contexts An intelligent system is highly connected to business aspects because, after all, you are using data science and machine learning to solve a business issue or to build a commercial product, or for getting useful insights from the data that is acquired, to make good decisions. Identifying the right problems and asking the right questions are important when building your machine learning model, in order to solve business issues. In this tutorial, we had a look at somes tips and best practices to build intelligent systems using Machine Learning. To become a master at penetration testing using machine learning with Python,  check out this book  Mastering Machine Learning for Penetration Testing Why TensorFlow always tops machine learning and artificial intelligence tool surveys Intelligent Edge Analytics: 7 ways machine learning is driving edge computing adoption in 2018 Tackle trolls with Machine Learning bots: Filtering out inappropriate content just got easy
Read more
  • 0
  • 0
  • 13046

article-image-12-ubiquitous-artificial-intelligence-powered-apps-that-are-changing-lives
Bhagyashree R
30 Aug 2018
11 min read
Save for later

12 ubiquitous artificial intelligence powered apps that are changing lives

Bhagyashree R
30 Aug 2018
11 min read
Artificial Intelligence is making it easier for people to do things every day. You can schedule your day, search for photos of loved ones, type emails on the go, or get things done with the virtual assistant. AI also provides innovative ways of tackling existing problems, from healthcare to advancing scientific discovery. According to Gartner’s Top 10 Strategic Technology Trends for 2018, the next few years will see every app, application, and service incorporating AI at some level. With major companies like Google, Amazon, IBM investing in AI and incorporating AI in their products, this statement, instead of a prediction is becoming a fact. Apple’s IPhone X comes with a Facial Recognition System, Samsung’s Bixby, Amazon’s Alexa, Google’s Google Assistant, and the recently launched Android Pie. Android Pie learns your preferences based on your usage patterns and gets better over time. It even provides you a breakdown of the time you spend on your phone. AI comes with endless possibilities, things that we used to dream of are now becoming a part of our day to day life. So, I have listed here, in no particular order, some of those innovative applications: Microsoft’s Seeing AI - Eye for the visually impaired Source: Microsoft Seeing AI is a perfect example of how technology is improving our lives. It is an intelligent camera app that uses computer vision to audibly help blind and visually impaired people to know about their surroundings. It comes with functionalities like reading out short text and documents for you, giving you description about a person, identifies currencies, colour, handwriting, light and even images in other apps using the device's camera. A data scientist named Anirudh Koul started this project (called Deep Vision earlier) to help his grandfather who was gradually losing his vision. Two breakthroughs by the Microsoft researchers facilitated him to further his idea: vision-to-language and image classification. To make the app this advance and real-time, they used the idea of making servers communicate with Microsoft Cognitive Services. This app brings in four technologies together to provide users with an array of functionalities: OCR, barcode scanner, facial recognition, and scene recognition. Check out this YouTube tutorial to understand how it works. Download App Store Ada - Healthcare in your hand Source: Digital Health Ada, with a very simple and conversational UI, helps you understand what could be wrong if you or someone you care about is not feeling well. Just like any doctor’s appointment, it starts with your basic details, then does an assessment, in which it asks several personalized questions related to the symptoms, and then gives a report. The report consists of a summary, possible causes, and less-likely causes. It also allows you to share the report as a PDF. After training over several years using real world cases, Ada has become a handy health advisor. Its platform is powered by a sophisticated Artificial Intelligence engine combined with large medical knowledge base covering many thousands of conditions, symptoms and findings. In every medical assessment, Ada takes all of a patient’s information into account, including past medical history, symptoms, risk factors and more. Using machine learning and multiple closed feedback loops, Ada becomes more intelligent. Download App Store Google Play Store Plume Air Report - An air pollution monitor Source: Plume Labs Blog Industrialization and urbanization definitely comes with their side effects, the main being air pollution. It has become inevitable to keep yourself safe from the pollution, but now at least you can be aware of the air pollution levels in your area. Plume Air Report forecasts how air quality will evolve hour by hour over the next 24 hours similar to weather forecast. You can also easily compare the air quality between cities. It gives you insight on all pollutants (PM2.5, PM10, O3, NO2), with absolute concentration levels and your local air quality scale. It uses machine learning and atmospheric sciences to deliver real-time and hourly forecast air quality data. First, latest pollution levels is collected from over 12,000 monitoring stations and 80 public agencies around the world and then filtered for errors. Local atmospheric data (wind, temperature, atmosphere, etc.) is sourced to track their influence on pollution levels in your city. A team of data scientists analyzes local specifics such as geographical features and human activities. Finally, AI algorithms and atmospheric models are developed that turn this giant amount of data into hourly forecasts. Download App Store Google Play Store Aura - Mindfulness meets AI Source: Popular Science In this fast life, slow down a little and give yourself a time out with Aura. Aura is a new kind of mindfulness app that learns about you and simplifies your learning through guided meditations. It helps in reducing stress and increases positivity through 3-minute meditations, personalized by Artificial Intelligence. Aura is an intelligent app that leverages machine learning to give you a unique experience. After every exercise, you can rate your experience and Aura will learn how to provide more tailored meditations according to your needs. You can even track your mood and learn your mood patterns. Download App Store Google Play Store Replika - An emotive chatbot as a friend for life Source: Medium Want to be friends with someone who is always there to listen to you, talk to you, and never judges you? Then Replika is for you! It helps you make a real connection with an unreal friend. The idea of building Replika came from a very tragic background. The founder of the software company, Luka, Eugenia Kudya, lost her best friend in an accident in November 2015. She used to go through their messenger texts to bring back their memories. This is how she got this idea to develop a chatbot making it learn from the sample texts sent by her best friend. In her own words, “Most of the companies try to build an app that talks, but we tried to build an app that could listen well”. The chatbot uses neural network facilitating more natural one-on-one conversation with its user, and over time, learn how to speak like them. The source code is freely available for developers under the name CakeChat. It comes with a pre-trained model that you can use as is to run a chatbot that maintains a conversation in a certain emotional state. You can also build a variety of other conversational agents by using your own dataset, for example, persona-based model, emotional chatting machine, topic-centric model. To know more about the background and evolution of Replika, check out this amazing YouTube video. Download App Store Google Play Store Google Assistant - Your personal Google Source: Google Assistant When talking of AI-powered apps, voice assistants probably come first in your mind. Google Assistant makes your life easier and helps in organizing your day better. You can manage your little tasks, plan your day, enjoy entertainment, and get answers. It can also sync to your other devices including Google Home, smart TVs, laptops, and more. To give users smart assistance, Google Assistant relies on Artificial Intelligence technologies such as natural language processing, natural language understanding, and machine learning to understand what the user is saying, and to make suggestions or act on that language input. Download App Store Google Play Store Hound - Say it, Get it Source: Android Apps In an array of virtual assistants to choose from, Hound understands your voice commands better. You do not need to give “search query” like commands and can have a more natural conversation. Hound can be used for variety of tasks, some of them are: search, discover, and play music, set alarms, timers, and reminders, call, text, navigate hands-free, get the weather forecast. Hound’s speed and accuracy comes from their powerful Houndify platform. This platform combines Speech Recognition and Natural Language Understanding into a single step, which is called Speech-to-Meaning. Download App Store Google Play Store Picai - An app that picks filters for your pics, keeping you looking your best always Source: Google Play Store Picai with the help of Artificial Intelligence, recommends picture-perfect filters by analyzing the scene. It automatically analyzes the scene and with the help of object recognition detects the type of the object, for example, a plant, a girl, etc. It then uses a proprietary deep learning model to recommend two optimum filters from 100+ filters. What makes this app stand out is the split-screen filter selection, which makes the filter selection easier for the users. When using this app be warned of the picture quality and app size (76 MB), but it is definitely worth trying! Download Google Play Store Microsoft Pix - The pro photographer Source: MSPoweuser Named one of the 50 Best Apps of the Year by Time Magazine, Microsoft Pix helps you take better photos without the extra effort! It solves the problem of “not living in the moment”. It comes with some amazing features like, hyperlapse, live images Microsoft Pix Comix, artistic styles to transform your photos, smart settings that automatically checks scene and lighting between each shutter tap, and updates settings between each shot, and more. Microsoft Pix uses Artificial Intelligence to improve the image, such as cropping edges, enhancing color and tone, and sharpening focus. It includes enhanced deep-learning capabilities around image understanding. It captures a burst of 10 frames with each shutter click and uses AI to select three best shots. Before the remaining photos are deleted, it uses data from the entire burst to remove noise. These best, enhanced images are ready in about a second. The app also detects whether your eyes are open or not using the facial recognition technology. Download App Store ELSA - Your machine learning English teacher Source: TechCrunch ELSA (English Language Speech Assistant)  helps you in learning English and bettering your pronunciation every day. It provides you a curriculum tailored just, regular feedback, progress tracking, common phrases used in daily life. You can practice in a relaxed environment and improve your speaking skills to prepare for the TOEFL, IELTS, TOEIC ELSA coaches you in improving your English pronunciations by using speech recognition, deep learning, and Artificial Intelligence. Download App Store Google Play Store Socratic - Homework in a snap Source: Google Play Store Socratic is your new helper, apart from your parents, in completing those complex Math problems. You just need to take a photo of your homework and can get explanations, videos, step-by-step help, instantly. Also, these resources are jargon-free, helping you understand the concepts better. It supports all subjects including Math (Algebra, Calculus, Statistics, Graphing, etc), Science, Chemistry, History, English, Economics, and more. Socratic uses Artificial Intelligence to figure out the concepts you need to learn in order to answer it. For this it combines cutting-edge computer vision technologies, which read questions from images, with machine learning classifiers. These classifiers are built using millions of sample homework questions, to accurately predict which concepts will help you solve your question. Download App Store Google Play Store Recent News - Stay informed Source: Recent News Recent News is an app that will provide you customized news. Some of the features that it comes with to give you the daily dose of news include one-minute news summary with very quick load time, hot news, local news, and personalized recommendations, instantly share news on Facebook, Twitter, and other social networks, and many more. It uses Artificial Intelligence to learn about your interests, suggest relevant articles, and propose topics you might like to follow. So, the more you use it the better it becomes! The app is surely innovative and saves time, but I do wish the developers applied some innovation in the app’s name as well :P Download App Store Google Play Store And that’s the end of my list. People say, “Smartphones and apps are becoming smarter, and we are becoming dumber”. But I would like to say that these apps, with the right usage, empower us to become smarter. Agree? 7 Popular Applications of Artificial Intelligence in Healthcare 5 examples of Artificial Intelligence in Web apps What Should We Watch Tonight? Ask a Robot, says Matt Jones from OVO Mobile [Interview]
Read more
  • 0
  • 0
  • 13048

article-image-nvidia-leads-the-ai-hardware-race-but-which-of-its-gpus-should-you-use-for-deep-learning
Prasad Ramesh
29 Aug 2018
8 min read
Save for later

NVIDIA leads the AI hardware race. But which of its GPUs should you use for deep learning?

Prasad Ramesh
29 Aug 2018
8 min read
For readers who are new to deep learning and who might be wondering what a GPU is, let’s start there. To make it simple, consider deep learning as nothing more than a set of calculations - complex calculations, yes, but calculations nonetheless. To run these calculations, you need hardware. Ordinarily, you might just use a normal processor like the CPU inside your laptop. However, this isn’t powerful enough to process at the speed at which deep learning computations need to happen. GPUs, however, can. This is because while a conventional CPU has only a few complex cores, a GPU can have thousands of simple cores. With a GPU, training a deep learning data set can take just hours instead of days. However, although it’s clear that GPUs have significant advantages over CPUs, there is nevertheless a range of GPUs available, each having their own individual differences. Selecting one is ultimately a matter of knowing what your needs are. Let’s dig deeper and find out how to go about shopping for GPUs… What to look for before choosing a GPU? There are a few specifications to consider before picking a GPU. Memory bandwidth: This determines the capacity of a GPU to handle large amounts of data. It is the most important performance metric, as with faster memory bandwidth more data can be processed at higher speeds. Number of cores: This indicates how fast a GPU can process data. A large number of CUDA cores can handle large datasets well. CUDA cores are parallel processors similar to cores in a CPU but their number is in thousands and are not suited for complex calculations that a CPU core can perform. Memory size: For computer vision projects, it is crucial for memory size to be as much as you can afford. But with natural language processing, memory size does not play such an important role. Our pick of GPU devices to choose from The go to choice here is NVIDIA; they have standard libraries that make it simple to set things up. Other graphics cards are not very friendly in terms of the libraries supported for deep learning. NVIDIA CUDA Deep Neural Network library also has a good development community. “Is NVIDIA Unstoppable In AI?” -Forbes “Nvidia beats forecasts as sales of graphics chips for AI keep booming” -SiliconANGLE AMD GPUs are powerful too but lack library support to get things running smoothly. It would be really nice to see some AMD libraries being developed to break the monopoly and give more options to the consumers. NVIDIA RTX 2080 Ti: The RTX line of GPUs are to be released in September 2018. The RTX 2080 Ti will be twice as fast as the 1080 Ti. Price listed on NVIDIA website for founder’s edition is $1,199. RAM: 11 GB Memory bandwidth: 616 GBs/second Cores: 4352 cores @ 1545 MHz NVIDIA RTX 2080: This is more cost efficient than the 2080 Ti at a listed price of $799 on NVIDIA website for the founder’s edition. RAM: 8 GB Memory bandwidth: 448 GBs/second Cores: 2944 cores @ 1710 MHz NVIDIA RTX 2070: This is more cost efficient than the 2080 Ti at a listed price of $599 on NVIDIA website. Note that the other versions of the RTX cards will likely be cheaper than the founder’s edition around a $100 difference. RAM: 8 GB Memory bandwidth: 448 GBs/second Cores: 2304 cores @ 1620 MHz NVIDIA GTX 1080 Ti: Priced at $650 on Amazon. This is a higher end option but offers great value for money, and can also do well in Kaggle competitions. If you need more memory but cannot afford the RTX 2080 Ti go for this. RAM: 11 GB Memory bandwidth: 484 GBs/second Cores: 3584 cores @ 1582 MHz NVIDIA GTX 1080: Priced at $584 on Amazon. This is a mid-high end option only slightly behind the 1080Ti. VRAM: 8 GB Memory bandwidth: 320 GBs/second Processing power: 2560 cores @ 1733 MHz NVIDIA GTX 1070 Ti: Priced at around $450 on Amazon. This is slightly less performant than the GTX 1080 but $100 cheaper. VRAM: 8 GB Memory bandwidth: 256 GBs/second Processing power: 2438 cores @ 1683 MHz NVIDIA GTX 1070: Priced at $380 on Amazon is currently the bestseller because of crypto miners. Somewhat slower than the 1080 GPUs but cheaper. VRAM: 8 GB Memory bandwidth: 256 GBs/second Processing power: 1920 cores @ 1683 MHz NVIDIA GTX 1060 6GB: Priced at around $290 on Amazon. Pretty cheap but the 6 GB VRAM limits you. Should be good for NLP but you’ll find the performance lacking in computer vision. VRAM: 6 GB Memory bandwidth: 216 GBs/second Processing power: 1280 cores @ 1708 MHz NVIDIA GTX 1050 Ti: Priced at around $200 on Amazon. This is the cheapest workable option. Good to get started with deep learning and explore if you’re new. VRAM: 4 GB Memory bandwidth: 112 GBs/second Processing power: 768 cores @ 1392 MHz NVIDIA Titan XP: The Titan XP is also an option but gives only a marginally better performance while being almost twice as expensive as the GTX 1080 Ti, it has 12 GB memory, 547.7 GB/s bandwidth and 3840 cores @ 1582 MHz. On a side note, NVIDIA Quadro GPUs are pretty expensive and don’t really help in deep learning they are more of use in CAD and working with heavy graphics production tasks. The graph below does a pretty good job of visualizing how all the GPUs above compare: Source: Slav Ivanov Blog, processing power is calculated as CUDA cores times the clock frequency Does the number of GPUs matter? Yes, it does. But how many do you really need? What’s going to suit the scale of your project without breaking your budget? 2 GPUs will always yield better results than just one - but it’s only really worth it if you need the extra power. There are two options you can take with multi-GPU deep learning. On the one hand, you can train several different models at once across your GPUs, or, alternatively distribute one single training model across multiple GPUs known as  “multi-GPU training”. The latter approach is compatible with TensorFlow, CNTK, and PyTorch. Both of these approaches have advantages. Ultimately, it depends on how many projects you’re working on and, again, what your needs are. Another important point to bear in mind is that if you’re using multiple GPUs, the processor and hard disk need to be fast enough to feed data continuously - otherwise the multi-GPU approach is pointless. Source: NVIDIA website It boils down to your needs and budget, GPUs aren’t exactly cheap.   Other heavy devices There are also other large machines apart from GPUs. These include the specialized supercomputer from NVIDIA, the DGX-2, and Tensor processing units (TPUs) from Google. The NVIDIA DGX-2 If you thought GPUs were expensive, let me introduce you to NVIDIA DGX-2, the successor to the NVIDIA DGX-1. It’s a highly specialized workstation; consider it a supercomputer that has been specially designed to tackle deep learning. The price of the DGX-2 is (*gasp*) $399,000. Wait, what? I could buy some new hot wheels for that, or Dual Intel Xeon Platinum 8168, 2.7 GHz, 24-cores, 16 NVIDIA GPUs, 1.5 terabytes of RAM, and nearly 32 terabytes of SSD storage! The performance here is 2 petaFLOPS. Let’s be real: many of us probably won’t be able to afford it. However, NVIDIA does have leasing options, should you choose to try it. Practically speaking, this kind of beast finds its use in research work. In fact, the first DGX-1 was gifted to OpenAI by NVIDIA to promote AI research. Visit the NVIDIA website for more on these monster machines. There are also personal solutions available like the NVIDIA DGX Workstation. TPUs Now that you’ve caught your breath after reading about AI dream machines, let’s look at TPUs. Unlike the DGX machines, TPUs run on the cloud. A TPU is what’s referred to as an application-specific integrated circuit (ASIC) that has been designed specifically for machine learning and deep learning by Google. Here’s the key stats: Cloud TPUs can provide up to 11.5 petaflops of performance in a single pod. If you want to learn more, go to Google’s website. When choosing GPUs you need to weigh up your options The GTX 1080 Ti is most commonly used by researchers and competitively for Kaggle, as it gives good value for money. Go for this if you are sure about what you want to do with deep learning. The GTX 1080 and GTX 1070 Ti are cheaper with less computing power, a more budget friendly option if you cannot afford the 1080 Ti. GTX 1070 saves you some more money but is slower. The GTX 1060 6GB and GTX 1050 Ti are good if you’re just starting off in the world of deep learning without burning a hole in your pockets. If you must have the absolute best GPU irrespective of the cost then the RTX 2080 Ti is your choice. It offers twice the performance for almost twice the cost of a 1080 Ti. Nvidia unveils a new Turing architecture: “The world’s first ray tracing GPU” Nvidia GPUs offer Kubernetes for accelerated deployments of Artificial Intelligence workloads Nvidia’s Volta Tensor Core GPU hits performance milestones. But is it the best?
Read more
  • 0
  • 0
  • 17867

article-image-a-machine-learning-roadmap-for-web-developers
Sugandha Lahoti
27 Aug 2018
7 min read
Save for later

A Machine learning roadmap for Web Developers

Sugandha Lahoti
27 Aug 2018
7 min read
Now that you’ve opened this article, I’ll assume you’re a web developer who is all excited with the prospect of building a machine learning project. You may be here for one of these reasons. Either you have been in a circle of people who find web development is dying? (Is it really dying or just unwell?). Or maybe you are stagnating in your current trajectory. And so, you want to learn something different, something trending, something like Artificial Intelligence. Or you/your employer/your client is aware of the capabilities of machine learning and want to include it in some part of your web app to make it more powerful. Or like the majority of the folks, you just want to see first hand if all the fuss about artificial intelligence is really worth all the effort to switch gears, by building a side toy ML project. Either way, there are different approaches to fulfill these needs. Learning Machine Learning for the Web with Javascript Learning machine learning coming from a web development background comes with its own constraints. You might worry about having to learn entirely different concepts from scratch - from different algorithms to programming languages like Python to mathematical concepts like linear algebra, calculus, and statistics. However, chances are you can skip learning a new language. You probably know some Javascript in some form or the other thanks to your web development experience. As such, you can learn Machine Learning in JavaScript (You don’t have to learn another programming language from scratch) and take it right to your browsers with WebGL. There are some advantages to using JavaScript for ML. Its popularity is one; while ML in JavaScript is not as popular as Python’s ML ecosystem, at the moment, the language itself is. As demand for ML applications rises, and as hardware becomes faster and cheaper, it's only natural for machine learning to become more prevalent in the JavaScript world. The JavaScript ecosystem offers a rich set of libraries suited for most Machine Learning tasks. Math: math.js Data Analysis: d3.js Server: node.js (express, koa, hapi) Performance: Tensorflow.js (e.g. GPU accelerated via WebGL API in the browser), Keras.js etc. Read also: 5 JavaScript machine learning libraries you need to know BRIIM is a good collection of materials to get you started as web developer or JavaScript enthusiast in machine learning. In case you’re interested in learning Python instead of Javascript, here are the set of libraries you should pick. Math: numpy Data Analysis: Pandas Data Mining: PySpark Server: Flask, Django Performance: TensorFlow (because it is written with a Python API over a C/C++ engine) or Keras (sits on top of TensorFlow). Using Machine Learning as a service If you don’t want to spend your time learning frameworks, tools, and languages suited for machine learning, you can adopt Machine Learning as a service or MLaaS. These services provide machine learning tools as part of cloud computing services. So basically, you can benefit from machine learning without the allied cost, time and risk of establishing an in-house internal machine learning team. All you need is sufficient knowledge of incorporating APIs. All Machine Learning tasks including data pre-processing, model training, model evaluation, and predictions can be completed through MLaaS. Read also: How machine learning as a service is transforming cloud A large number of companies provide Machine Learning as a service. Most prominent ones include: Amazon Machine Learning Amazon ML makes it easy for web developers to build smart applications using simple APIs. This includes applications for fraud detection, demand forecasting, targeted marketing, and click prediction. They provide a Developer Guide, which provides a conceptual overview of Amazon ML and includes detailed instructions for using the service. They also have a API reference, which describes all the API operations and provides sample requests and responses for supported web service protocols. Azure ML web app templates The web app templates available in the Azure Marketplace can build a custom web app that knows your web service's input data and expected results. All you need to do is give the web app access to your web service and data, and the template does the rest. There are two available templates: Azure ML Request-Response Service Web App Template Azure ML Batch Execution Service Web App Template Each template creates a sample ASP.NET application by using the API URI and key for your web service. The template then deploys the application as a website to Azure. No coding is required to use these templates. You just supply the API key and URI, and the template builds the application for you. Google Cloud based APIs Google also provides machine learning services, with pre-trained models and a service to generate your own tailored models. Google’s Cloud AutoML is a suite of machine learning products that enables developers with limited machine learning expertise to train high-quality models specific to their business needs. Cloud AutoML is used by Disney on their website shopDisney to enhance guest experience through more relevant search results, expedited discovery, and product recommendations. Building Conversational Interfaces As a web developer, another thing you might be looking into, is developing conversational interfaces or chatbots to enhance your web apps. Amazon, Google, and Microsoft provide Machine learning powered tools to help developers with building their own chatbots. Amazon Lex You can embed chatbots in your web apps with the Amazon Lex featuring ASR (Automatic Speech Recognition) and NLP (Natural Language Processing) capabilities. The API can recognize written and spoken text and the Lex interface allows you to hook the recognized inputs to various back-end solutions. Lex currently supports deploying chatbots for Facebook Messenger, Slack, and Twilio. Google Dialogflow Google’s Dialogflow can build voice and text-based conversational interfaces, such as voice apps and chatbots, powered by AI. Dialogflow incorporates Google's machine learning expertise and products such as Google Cloud Speech-to-Text. The API can be tweaked and customized for needed intents using Java, Node.js, and Python. It is also available as an enterprise edition. Microsoft Azure Cognitive Services Microsoft Cognitive Services simplify a variety of AI-based tasks, giving you a quick way to add intelligence technologies to your bots with just a few lines of code. It provides tools and APIs for aiding the development of conversational interfaces. These include: Translator Speech API Bing Speech API to convert text into speech and speech into text Speaker Recognition API for voice verification tasks Custom Speech Service to apply Azure NLP capacities using own data and models Language Understanding Intelligent Service (LUIS) is an API that analyzes intentions in text to be recognized as commands Text Analysis API for sentiment analysis and defining topics Bing Spell Check Translator Text API Web Language Model API that estimates probabilities of words combinations and supports word autocompletion Linguistic Analysis API used for sentence separation, tagging the parts of speech, and dividing texts into labeled phrases Read also: Top 4 chatbot development frameworks for developers These tools should be enough to get your feet off the ground quickly and move into the specific area of machine learning. Ultimately your choice of tool relies on the kind of application you want to build, your level of expertise, and how much time and effort you’re willing to put to learn. Obviously, depending on your area of choice, you would have to do more research and develop yourself in those areas. How should web developers learn machine learning? 5 examples of Artificial Intelligence in Web apps The most valuable skills for web developers to learn in 2018
Read more
  • 0
  • 0
  • 14828

article-image-tensorflow-always-tops-machine-learning-artificial-intelligence-tool-surveys
Sunith Shetty
23 Aug 2018
9 min read
Save for later

Why TensorFlow always tops machine learning and artificial intelligence tool surveys

Sunith Shetty
23 Aug 2018
9 min read
TensorFlow is an open source machine learning framework for carrying out high-performance numerical computations. It provides excellent architecture support which allows easy deployment of computations across a variety of platforms ranging from desktops to clusters of servers, mobiles, and edge devices. Have you ever thought, why TensorFlow has become so popular in such a short span of time? What made TensorFlow so special, that we seeing a huge surge of developers and researchers opting for the TensorFlow framework? Interestingly, when it comes to artificial intelligence frameworks showdown, you will find TensorFlow emerging as a clear winner most of the time. The major credit goes to the soaring popularity and contributions across various forums such as GitHub, Stack Overflow, and Quora. The fact is, TensorFlow is being used in over 6000 open source repositories showing their roots in many real-world research and applications. How TensorFlow came to be The library was developed by a group of researchers and engineers from the Google Brain team within Google AI organization. They wanted a library that provides strong support for machine learning and deep learning and advanced numerical computations across different scientific domains. Since the time Google open sourced its machine learning framework in 2015, TensorFlow has grown in popularity with more than 1500 projects mentions on GitHub. The constant updates made to the TensorFlow ecosystem is the real cherry on the cake. This has ensured all the new challenges developers and researchers face are addressed, thus easing the complex computations and providing newer features, promises, and performance improvements with the support of high-level APIs. By open sourcing the library, the Google research team have received all the benefits from a huge set of contributors outside their existing core team. Their idea was to make TensorFlow popular by open sourcing it, thus making sure all new research ideas are implemented in TensorFlow first allowing Google to productize those ideas. Read Also: 6 reasons why Google open sourced TensorFlow What makes TensorFlow different from the rest? With more and more research and real-life use cases going mainstream, we can see a big trend among programmers, and developers flocking towards the tool called TensorFlow. The popularity for TensorFlow is quite evident, with big names adopting TensorFlow for carrying out artificial intelligence tasks. Many popular companies such as NVIDIA, Twitter, Snapchat, Uber and more are using TensorFlow for all their major operations and research areas. On one hand, someone can make a case that TensorFlow’s popularity is based on its origins/legacy. TensorFlow being developed under the house of “Google” enjoys the reputation of the household name. There’s no doubt, TensorFlow has been better marketed than some of its competitors. Source: The Data Incubator However that’s not the full story. There are many other compelling reasons why small scale to large scale companies prefer using TensorFlow over other machine learning tools TensorFlow key functionalities TensorFlow provides an accessible and readable syntax which is essential for making these programming resources easier to use. The complex syntax is the last thing developers need to know given machine learning’s advanced nature. TensorFlow provides excellent functionalities and services when compared to other popular deep learning frameworks. These high-level operations are essential for carrying out complex parallel computations and for building advanced neural network models. TensorFlow is a low-level library which provides more flexibility. Thus you can define your own functionalities or services for your models. This is a very important parameter for researchers because it allows them to change the model based on changing user requirements. TensorFlow provides more network control. Thus allowing developers and researchers to understand how operations are implemented across the network. They can always keep track of new changes done over time. Distributed training The trend of distributed deep learning began in 2017, when Facebook released a paper showing a set of methods to reduce the training time of a convolutional neural network model. The test was done on RESNET-50 model on ImageNet dataset which took one hour to train instead of two weeks. 256 GPUs spread over 32 servers were used. This revolutionary test has open the gates for many research work which have massively reduced the experimentation time by running many tasks in parallel on multiple GPUs. Google’s distributed TensorFlow has allowed all the researchers and developers to scale out complex distributed training using in-built methods and operations that optimizes distributed deep learning among servers. . Google’s distributed TensorFlow engine which is part of the regular TensorFlow repo, works exceptionally well with the existing TensorFlow’s operations and functionalities. It has allowed exploring two of the most important distributed methods: Distribute the training time of a neural network model over many servers to reduce the training time. Searching for good hyperparameters by running parallel experiments over multiple servers. Google has given distributed TensorFlow engine the required power to steal the share of the market acquired by other distributed projects such as Microsoft’s CNTK, AMPLab's SparkNet, and CaffeOnSpark. Even though the competition is tough, Google has still managed to become more popular when compared to the other alternatives in the market. From research to production Google has, in some ways, democratized deep learning., The key reason is TensorFlow’s high-level APIs making deep learning accessible to everyone. TensorFlow provides pre-built functions and advanced operations to ease the task of building different neural network models. It provides the required infrastructure and hardware which makes them one of the leading libraries used extensively by researchers and students in the deep learning domain. In addition to research tools, TensorFlow extends the services by bringing the model in production using TensorFlow Serving. It is specifically designed for production environments, which provides a flexible, high-performance serving system for machine learning models. It provides all the functionalities and operations which makes it easy to deploy new algorithms and experiments as per changing requirements and preferences. It provides an excellent feature of out-of-the-box integration with TensorFlow models which can be easily extended to serve other types of models and data. TensorFlow’s API is a complete package which is easier to use and read, plus provides helpful operators, debugging and monitoring tools, and deployment features. This has led to growing use of TensorFlow library as a complete package within the ecosystem by the emerging body of students, researchers, developers, production engineers from various fields who are gravitating towards artificial intelligence. There is a TensorFlow for web, mobile, edge, embedded and more TensorFlow provides a range of services and modules within their existing ecosystem making them as one of the ground-breaking end-to-end tools to provide state-of-the-art deep learning. TensorFlow.js for machine learning on the web JavaScript library for training and deploying machine learning models in the browser. This library provides flexible and intuitive APIs to build and train new and pre-existing models from scratch right in the browser or under Node.js. TensorFlow Lite for mobile and embedded ML It is a TensorFlow lightweight solution used for mobile and embedded devices. It is fast since it enables on-device machine learning inference with low latency. It supports hardware acceleration with the Android Neural Networks API. The future releases of TensorFlow Lite will bring more built-in operators, performance improvements, and will support more models to simplify the developer’s experience of bringing machine learning services within mobile devices. TensorFlow Hub for reusable machine learning A library which is used extensively to reuse machine learning models. Thus you can transfer learning by reusing parts of machine learning models. TensorBoard for visual debugging While training a complex neural network model, the computations you use in TensorFlow can be very confusing. TensorBoard makes it very easy to understand and debug your TensorFlow programs in the form of visualizations. It allows you to easily inspect and understand your TensorFlow runs and graphs. Sonnet Sonnet is a DeepMind library which is built on top of TensorFlow extensively used to build complex neural network models. All of this factors have made the TensorFlow library immensely appealing for building a wide spectrum of machine learning and deep learning projects. This tool has become a preferred choice for everyone from space research giant NASA and other confidential government agencies, to an impressive roster of private sector giants. Road Ahead for TensorFlow TensorFlow no doubt is better marketed compared to the other deep learning frameworks. The community appears to be moving very fast. In any given hour, there are approximately 10 people around the world contributing or improving the TensorFlow project on GitHub. TensorFlow dominates the field with the largest active community. It will be interesting to see what new advances TensorFlow and other utilities make possible for the future of our digital world. Continuing the recent trend of rapid updates, the TensorFlow team is making sure they address all the current and active challenges faced by the contributors and the developers while building machine learning and deep learning models. TensorFlow 2.0 will be a major update, we can expect the release candidate by next year early March. The preview version of this major milestone is expected to hit later this year. The major focus will be on ease of use, additional support for more platforms and languages, and eager execution will be the central feature of TensorFlow 2.0. This breakthrough version will add more functionalities and operations to handle current research areas such as reinforcement learning, GANs, building advanced neural network models more efficiently. Google will continue to invest and upgrade their existing TensorFlow ecosystem. According to Google’s CEO, Sundar Pichai “artificial intelligence is more important than electricity or fire.” TensorFlow is the solution they have come up with to bring artificial intelligence into reality and provide a stepping stone to revolutionize humankind. Read more The 5 biggest announcements from TensorFlow Developer Summit 2018 The Deep Learning Framework Showdown: TensorFlow vs CNTK Tensor Processing Unit (TPU) 3.0: Google’s answer to cloud-ready Artificial Intelligence
Read more
  • 0
  • 0
  • 16237
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-ai-tools-data-scientists-might-not-know
Amey Varangaonkar
22 Aug 2018
8 min read
Save for later

5 artificial intelligence tools data scientists might not know

Amey Varangaonkar
22 Aug 2018
8 min read
With Artificial Intelligence going mainstream, it is not at all surprising to see the number of tools and platforms for AI development go up as well. Open source libraries such as Tensorflow, Keras and PyTorch are very popular today. Not just those - enterprise platforms such as Azure AI Platform, Google Cloud AI and Amazon Sagemaker are commonly used to build scalable production-grade AI applications. While you might be already familiar with these tools and frameworks, there are quite a few relatively unknown AI tools and services which can make your life as a data scientist much, much easier! In this article, we look at 5 such tools for AI development which you may or may not have heard of before. Wit.ai One of the most popular use-cases of Artificial Intelligence today is building bots that facilitate effective human-computer interaction. Wit.ai, a platform for building these conversational chatbots, finds applications across various platforms, including mobile apps, IoT as well as home automation. Used by over 150,000 developers across the world, this platform gives you the ability to build conversational UI that supports text categorization, classification, sentiment analysis and a whole host of other features. Why you should try this machine learning tool out There are a multitude of reasons why wit.ai is so popular among developers for creating conversational chatbots. Some of the major reasons are: Support for text as well as voice, which gives you more options and flexibility in the way you want to design your bots Support for multiple languages such as Python, Ruby and Node.js which facilitates better integration of your app with the website or the platform of your choice The documentation is very easy to follow Lots of built-in entities to ease the development of your chatbots Intel OpenVINO Toolkit Bringing together two of the most talked about technologies today, i.e. Artificial Intelligence and Edge Computing, we had to include Intel’s OpenVINO Toolkit in this list. Short for Open Visual Inference and Neural Network Optimization, this toolkit brings comprehensive computer vision and deep learning capabilities to the edge devices. It has proved to be an invaluable resource to industries looking to set up smart IoT systems for image recognition and processing using edge devices. The OpenVINO toolkit can be used with the commonly used popular frameworks such as OpenCV, Tensorflow as well as Caffe. It can be configured to leverage the power of the traditional CPUs as well as customized AI chips and FPGAs. Not just that, this toolkit also has support for the Vision Processing Unit, a processor developed specifically for machine vision. Why you should try this AI tool out Allows you to develop smart Computer Vision applications for IoT-specific use-cases Support for a large number of deep learning and image processing frameworks. Also, it can be used with the traditional CPUs as well as customized chips for AI/Computer Vision Its distributed capability allows you to develop scalable applications, which again is invaluable when deployed on edge devices You can know more about OpenVINO’s features and capabilities in our detailed coverage of the toolkit. Apache PredictionIO This one is for the machine learning engineers and data scientists looking to build large-scale machine learning solutions using the existing Big Data infrastructure. Apache PredictionIO is an open source, state-of-the-art Machine Learning server which can be easily integrated with the popular Big Data tools such as Apache Hadoop, Apache Spark and Elasticsearch to deploy smart applications. Source: PredictionIO System architecture As can be seen from the architecture diagram above, PredictionIO has modules that interact with the different components of the Big Data system and uses an App Server to communicate the results of the analysis to the outside devices. Why you should try this machine learning tool out Let’s you build production-ready models which can also be deployed as web services You can also leverage the machine learning capabilities of Apache Spark to build large-scale machine learning models Pre-built performance evaluation measures available to check the accuracy of your predictive models Most importantly, this tool helps you simplify your Big Data infrastructure without adding too many complexities IBM Snap ML A machine learning library that is 46 times faster than Tensorflow. If that’s not a reason to start using IBM’s Snap ML, what is? IBM have been taking some giant strides in the field of AI research in a bid to compete with the heavyweights in this space - mainly Google, Microsoft and Amazon. With Snap ML, they seem to have struck a goldmine. A library that can be used for high-speed machine learning models using the cutting edge CPU/GPU technology, Snap ML allows for agile development of models while scaling to process massive datasets. Why you should try this machine learning tool out It is insanely fast. Snap ML was used to train a logistic regression classifier on a terabyte-scale dataset in just under 100 seconds. It allows for GPU acceleration to avoid large data transfer overheads. With the enhanced GPU technology available today, Snap ML is one of the best tools you can have at your disposal to train models quickly and efficiently It allows for distributed model training and works on sparse data structures as well You should definitely check out our detailed coverage of Snap ML where we go into the depth of its features and understand why this is a very special tool. Crypto-ML It is common knowledge that cryptocurrency, especially Bitcoin, can be traded more efficiently and profitably by leveraging the power of machine learning. Large financial institutions and trading firms have been using the machine learning tools to great effect. However, it’s the individuals, on the other hand, who have relied on historical data and outdated techniques to forecast the trends. All that has now changed, thanks to Crypto-ML. Crypto-ML is a cryptocurrency trading platform designed specifically for individuals who want to get the most out of their investments in the most reliable, error-free ways. Using state-of-the-art deep learning techniques, Crypto-ML uses historical data to build models that predict future price movement. At the same time, it eliminates any human error or mistakes arising out of emotions. Why you should try this machine learning tool out No expertise in cryptocurrency trading is required if you want to use this tool Crypto-ML only makes use of historical data and builds data models to predict future prices without any human intervention Per the Crypto-ML website, the average gain on winning trades is close to 53%, whereas the average loss on losing trades is just close to 6%. If you are a data scientist or a machine learning developer with an interest in finance and cryptocurrency, this platform can also help you customize your own models for efficient trading. Here’s where you can read on how Crypto-ML works, in more detail. Other notable mentions Apart from the tools we mentioned above, there are a quite a few other tools that could not make it to the list, but deserve a special mention. Some of them are: ABBYY’s Real-time Recognition SDK for document recognition, language processing and data capturing is worth checking out. Vertex.ai’s PlaidML is an open source tool that allows you to build smart deep learning models across a variety of platforms. It leverages the power of Tile, a new machine learning language that facilitates tensor manipulation. Facebook recently open sourced MUSE, a Python library for efficient word embedding and other NLP tasks. This one’s worth keeping an eye on for sure! If you’re interested in browser-based machine learning, MachineLabs recently open sourced the entire code base of their machine learning platform. NVIDIA’s very own NVVL, their open source offering that provides GPU-accelerated video decoding for training deep learning models The vast ecosystem of tools and frameworks available for building smart, intelligent use-cases across various domains just points to the fact that AI is finding practical applications with every passing day. It is not an overstatement anymore to suggest that that AI is slowly becoming indispensable to businesses. This is not the end of it by any means either - expect to see more such tools spring to life in the near future, with some having game-changing, revolutionary consequences. So which tools are you planning to use for your machine learning / AI tasks? Is there any tool we missed out? Let us know! Read more Predictive Analytics with AWS: A quick look at Amazon ML Four interesting Amazon patents in 2018 that use machine learning, AR, and robotics How to earn $1m per year? Hint: Learn machine learning  
Read more
  • 0
  • 1
  • 5412

article-image-5-examples-of-artificial-intelligence-in-web-apps
Sugandha Lahoti
20 Aug 2018
7 min read
Save for later

5 examples of Artificial Intelligence in Web apps

Sugandha Lahoti
20 Aug 2018
7 min read
Modern day web app development is increasingly focused on building a customer-facing front-end presence with the use of Artificial Intelligence. Web apps, use Artificial Intelligence not just for intelligent automation, but also for building recommendation engines, website implementation, and image recognition, among other application areas. In this post, we look at five key areas, illustrated by real-world examples, where web apps are employing Artificial intelligence to automate some part of their system. Recommendation Engines of Amazon and Netflix Curating content based on the user’s context is one of the most widely used AI features in web apps. Amazon, for instance, uses item-based collaborative filtering for product classification. Amazon’s recommendation system uses a combination of goods-based recommendation (users are recommended for those similar to what they liked in the past) and buddy-based recommendation (users are recommended things which their Facebook friends like.) Not just for their recommendation system, Amazon has been using AI for multiple tasks. Their AI Management Strategy is called The Flywheel, where one part of Amazon acts as a catalyst for AI and machine learning growth in other areas. Read more: Four interesting Amazon patents in 2018 that use machine learning, AR, and robotics Another popular example is Netflix, who revamped their recommendation algorithm based on visual impressions. One of their research projects indicated that the artwork was not only the biggest influencer to a viewer's decision to watch content, but it also drew over 82% of their focus while browsing Netflix. This made them develop a new image recommendation algorithm which works in real time to project the image it thinks the user will respond to. They use implicit (user behavior) and Explicit data (user activity) and then feed this data to machine learning algorithms to figure out the relevant content for each user. For each title, users get the image with the highest rank based on their profile. Side by side, it continues collecting data from its 100 million other subscribers to improve its engine’s performance. Read more: What software stack does Netflix use? Google and Microsoft using Image recognition Image recognition can serve multiple uses for web apps including object and pattern recognition, locating duplicates (exact or partial), image search by fragments, and more. Two such unique applications of image recognition are Google’s Quickdraw and Microsoft’s Captionbot.ai. Quick Draw is Google’s AI-powered web app game, where users have to draw an everyday object that a neural network tries to recognize. Players are given 20 seconds to draw a random item, and Google’s neural network tries to match it with other 50 million hand-drawn sketches by other players to identify the correct one. Quickdraw aims to generate the world’s largest doodling data set, which is shared publicly to help further machine learning research. The data preserves user privacy by collecting only anonymous metadata, including timestamp, country code, whether or not the drawing was recognized, and which word the drawing corresponded to. This dataset was used in SketchRNN, a neural network that can draw words and interpolate between drawings. Another image recognition web app is Microsoft’s Captionbot.ai. The system can automatically generate a caption for an uploaded photograph. Users can rate how accurately it has detected what was on display. The algorithm learns from the rating, to make the captions more accurate. It uses three separate services to process the images. The Computer Vision API identifies the components of the photo, then mixes it with data from the Bing Image API, and runs any faces it spots through Emotion API. The Emotion API analyses facial expressions to detect anger, contempt, disgust, fear, and other traits. Based on the results from these APIs, the caption is generated. Google Docs powered by Natural Language Processing Modern Web apps can also be fueled with cognitive capabilities to make them stand apart from other apps. Instances of this include transforming human speech to text or conversing with people in natural language. One such example of a web app which includes natural language processing is Google Docs. Google Docs and Slides have an Explore feature to show text, images, and other features relevant to the document that a user is working on at any given point.  Docs can also use natural language to search through data and reports, and automatically generate formulas in Sheets. Google Docs recently incorporated an AI grammar checker, announced at Google Cloud Next. It uses a machine translation algorithm to recognize errors and suggest corrections as users type. Google Docs can also be integrated with Natural Language API to recognize the sentiment of selected text in a Google Doc and highlight it based on that sentiment. Web-based artificial intelligence Chatbots Web-based chatbots are just like app-based chatbots albeit they interact with users in the website browser. They use AI techniques such as natural language understanding and pattern recognition to store and distinguish between the context of the information provided and elicit a suitable response for future replies. An example of web-based chatbots are the Live Chat bots where the conversation with a visitor on a website is automated using a chatbot. Many live chat software companies are already experimenting with chatbots. Examples include the Operator bot used by Intercom, a company building customer messaging platform or Driftbot by Drift which gives your website a personal assistant. Read More: Top 4 chatbot development frameworks for developers Another example, are AI based chatbots which help in creating full websites. Right Click is a startup that introduced an A.I.-powered chatbot which uses Artificial Intelligence in a conversational interface to create websites. It asks general questions during the conversation like “What industry you belong to?” and “Why do you want to make a website?” and creates customized templates as per the given answers. Similarly, Wix’s Artificial Intelligence Design bot can tailor websites by learning about each person’s or business’ own needs. Web-based code helpers using AI Intelligent coding assistants are gaining popularity with their ability to understand the code and provide right suggestions at the right time. They can analyze code on the web and give fast and smart completions. Codota for Chrome is a smart web-based IDE which can build predictive models of code and suggest code completions and related content based on the current context present in the code. It combines program analysis, natural language processing, and machine learning to learn from the code. Users can look for Codota’s Icon on every code snippet on their browsers - in GitHub, StackOverflow and others. Another example is Deep Cognition’s Deep Learning Studio – Cloud. It is not exactly an IDE, but it features AI-powered drag & drop interface to help design deep learning models with ease. It features assisted modeling, for automated tensor size calculations and real-time validation. It also has AutoML feature to automatically build a neural network. [dropcap]E[/dropcap]ven though AI is a great choice to enhance your web apps, an important facet to keep in mind is ensuring fairness, accuracy, and transparency of your web apps. For instance, web apps powered by natural language should not discriminate people based on caste, color, or creed or hurt user sentiments. Similarly, those using neural networks for recognizing images should ensure the filtering of obscene images. Creating such types of artificial intelligence systems would require a hybrid of designers, programmers, ML engineers, and researchers. This collective group will have a good grasp of user experience, will be comfortable thinking in abstracts and algorithms, and equally well versed with the social impacts of artificial intelligence. Read More: 20 lessons on bias in machine learning systems by Kate Crawford at NIPS 2017 Uber introduces Fusion.js, a plugin-based web development framework for high-performance apps. Electron Fiddle: A ‘code playground’ for experimenting with cross-platform native apps. Warp: Rust’s new web framework for implementing WAI (Web Application Interface)
Read more
  • 0
  • 0
  • 29562

article-image-tackle-trolls-machine-learning-filtering-inappropriate-content
Amarabha Banerjee
15 Aug 2018
4 min read
Save for later

Tackle trolls with Machine Learning bots: Filtering out inappropriate content just got easy

Amarabha Banerjee
15 Aug 2018
4 min read
The most feared online entities in the present day are trolls. Trolls, a fearsome bunch of fake or pseudo online profiles, tend to attack online users, mostly celebrities, sports person or political profiles using a wide range of methods. One of these methods is to post obscene or NSFW (Not Safe For Work) content on your profile or website where User Generated Content (USG) is allowed. This can create unnecessary attention and cause legal troubles for you too. The traditional way out is to get a moderator (or a team of them). Let all the USGs pass through this moderation system. This is a sustainable solution for a small platform. But if you are running a large scale app, say a publishing app where you publish one hundred stories a day, and the success of these stories depend on the user interaction with them, then this model of manual moderation becomes unsustainable. More the number of USGs, more is the turn-around time, larger the moderation team size. This results in escalating costs, for a purpose that’s not contributing to your business growth in any manner. That’s where Machine Learning could help. Machine Learning algorithms that can scan images and content for possible abusive or adult content is a better solution that manual moderation. Tech giants like Microsoft, Google, Amazon have a ready solution for this. These companies have created APIs which are commercially available for developers. You can incorporate these APIs in your application to weed out the filth served by the trolls. The different APIs available for this purpose are Microsoft moderation, Google Vision, AWS Rekognition & Clarifai. Dataturks have made a comparative study on using these APIs on one particular dataset to measure their efficiency. They used a YACVID dataset with 180 images, manually labelled 90 of these images as nude and the rest as non-nude. The dataset was then fed to the 4 APIs mentioned above, their efficiency was tested based on the following parameters. True Positive (TP): Given a safe photo, the API correctly says so False Positive (FP): Given an explicit photo but the API incorrectly classifies it as safe. False negative (FN): Given a safe photo but the API is not able to detect so and True negative(TN): Given an explicit photo and the API correctly says so. TP and TN are two cases which meant the system behaved correctly. An FP meant that the app was vulnerable to attacks from trolls, FN meant the efficiency of the systems were low and hence not practically viable. 10% of the cases would be such that the API can’t decide whether its explicit or not. Those would be sent for manual moderation. This would bring down the maintenance cost of the moderation team. The results that they received are shown below: Source: Dataturks As it is evident from the above table, the best standalone API is Google vision with a 99% accuracy and 94% recall value. Recall value implies that if the same images are repeated, it can recognize them with 94% precision. The best results however were received with the combination of Microsoft and Google. The comparison of the response times are mentioned below: Source: dataturks The response time might have been affected with the fact that all the images accessed by the APIs were stored in Amazon S3. Hence AWS API might have had an unfair advantage on the response time. The timings were noted for 180 image calls per API. The cost is the lowest for AWS Rekognition - $1 for 1000 calls to the API. It’s $1.2 for Clarifai, $1.5 for both Microsoft and Google. The one notable drawback of the Amazon API was that the images had to be stored as S3 objects, or converted into that. All the other APIs accepted any web links as possible source of images. What this study says is that the power of filtering out negative and explicit content in your app is much easier now. You might still have to have a small team of moderators, but their jobs will be made a lot easier with the ML models implemented in these APIs. Machine Learning is paving the way for us to be safe from the increasing menace of Trolls, a threat to free speech and open sharing of ideas which were the founding stones of internet and the world wide web as a whole. Will this discourage Trolls from continuing their slandering or will it create a counter system to bypass the APIs and checks? We can only know in time. Facebook launches a 6-part Machine Learning video series Google’s new facial recognition patent uses your social network to identify you! Microsoft’s Brad Smith calls for facial recognition technology to be regulated
Read more
  • 0
  • 0
  • 6315

article-image-predictive-analytics-with-amazon-ml
Natasha Mathur
09 Aug 2018
9 min read
Save for later

Predictive Analytics with AWS: A quick look at Amazon ML

Natasha Mathur
09 Aug 2018
9 min read
As artificial intelligence and big data have become a ubiquitous part of our everyday lives, cloud-based machine learning services are part of a rising billion-dollar industry. Among the several services currently available in the market, Amazon Machine Learning stands out for its simplicity. In this article, we will look at Amazon Machine Learning, MLaaS, and other related concepts. This article is an excerpt taken from the book 'Effective Amazon Machine Learning' written by Alexis Perrier. Machine Learning as a Service Amazon Machine Learning is an online service by Amazon Web Services (AWS) that does supervised learning for predictive analytics. Launched in April 2015 at the AWS Summit, Amazon ML joins a growing list of cloud-based machine learning services, such as Microsoft Azure, Google prediction, IBM Watson, Prediction IO, BigML, and many others. These online machine learning services form an offer commonly referred to as Machine Learning as a Service or MLaaS following a similar denomination pattern of other cloud-based services such as SaaS, PaaS, and IaaS respectively for Software, Platform, or Infrastructure as a Service. Studies show that MLaaS is a potentially big business trend. ABI Research, a business intelligence consultancy, estimates machine learning-based data analytics tools and services revenues to hit nearly $20 billion in 2021 as MLaaS services take off as outlined in this business report  Eugenio Pasqua, a Research Analyst at ABI Research, said the following: "The emergence of the Machine-Learning-as-a-Service (MLaaS) model is good news for the market, as it cuts down the complexity and time required to implement machine learning and thus opens the doors to an increase in its adoption level, especially in the small-to-medium business sector." The increased accessibility is a direct result of using an API-based infrastructure to build machine-learning models instead of developing applications from scratch. Offering efficient predictive analytics models without the need to code, host, and maintain complex code bases lowers the bar and makes ML available to smaller businesses and institutions. Amazon ML takes this democratization approach further than the other actors in the field by significantly simplifying the predictive analytics process and its implementation. This simplification revolves around four design decisions that are embedded in the platform: A limited set of tasks: binary classification, multi-classification, and regression A single linear algorithm A limited choice of metrics to assess the quality of the prediction A simple set of tuning parameters for the underlying predictive algorithm That somewhat constrained environment is simple enough while addressing most predictive analytics problems relevant to business. It can be leveraged across an array of different industries and use cases. Let's see how! Leveraging full AWS integration The AWS data ecosystem of pipelines, storage, environments, and Artificial Intelligence (AI) is also a strong argument in favor of choosing Amazon ML as a business platform for its predictive analytics needs. Although Amazon ML is simple, the service evolves to greater complexity and more powerful features once it is integrated into a larger structure of AWS data related services. AWS is already a major factor in cloud computing. Here's what an excerpt from The Economist, August  2016 has to say about AWS (http://www.economist.com/news/business/21705849-how-open-source-software-and-cloud-computing-have-set-up-it-industry): AWS shows no sign of slowing its progress towards full dominance of cloud computing's wide skies. It has ten times as much computing capacity as the next 14 cloud providers combined, according to Gartner, a consulting firm. AWS's sales in the past quarter were about three times the size of its closest competitor, Microsoft's Azure. This gives an edge to Amazon ML, as many companies that are using cloud services are likely to be already using AWS. Adding simple and efficient machine learning tools to the product offering mix anticipates the rise of predictive analytics features as a standard component of web services. Seamless integration with other AWS services is a strong argument in favor of using Amazon ML despite its apparent simplicity. The following architecture is a case study taken from an AWS January 2016 white paper titled Big Data Analytics Options on AWS (http://d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS.pdf), showing a potential AWS architecture for sentiment analysis on social media. It shows how Amazon ML can be part of a more complex architecture of AWS services: Comparing performances in Amazon ML services Keeping systems and applications simple is always difficult, but often worth it for the business. Examples abound with overloaded UIs bringing down the user experience, while products with simple, elegant interfaces and minimal features enjoy widespread popularity. The Keep It Simple mantra is even more difficult to adhere to in a context such as predictive analytics where performance is key. This is the challenge Amazon took on with its Amazon ML service. A typical predictive analytics project is a sequence of complex operations: getting the data, cleaning the data, selecting, optimizing and validating a model and finally making predictions. In the scripting approach, data scientists develop codebases using machine learning libraries such as the Python scikit-learn library or R packages to handle all these steps from data gathering to predictions in production. As a developer breaks down the necessary steps into modules for maintainability and testability, Amazon ML breaks down a predictive analytics project into different entities: datasource, model, evaluation, and predictions. It's the simplicity of each of these steps that makes AWS so powerful to implement successful predictive analytics projects. Engineering data versus model variety Having a large choice of algorithms for your predictions is always a good thing, but at the end of the day, domain knowledge and the ability to extract meaningful features from clean data is often what wins the game. Kaggle is a well-known platform for predictive analytics competitions, where the best data scientists across the world compete to make predictions on complex datasets. In these predictive competitions, gaining a few decimals on your prediction score is what makes the difference between earning the prize or being just an extra line on the public leaderboard among thousands of other competitors. One thing Kagglers quickly learn is that choosing and tuning the model is only half the battle. Feature extraction or how to extract relevant predictors from the dataset is often the key to winning the competition. In real life, when working on business-related problems, the quality of the data processing phase and the ability to extract meaningful signal out of raw data is the most important and time-consuming part of building an effective predictive model. It is well known that "data preparation accounts for about 80% of the work of data scientists" (http://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/). Model selection and algorithm optimization remains an important part of the work but is often not the deciding factor when the implementation is concerned. A solid and robust implementation that is easy to maintain and connects to your ecosystem seamlessly is often preferred to an overly complex model developed and coded in-house, especially when the scripted model only produces small gains when compared to a service-based implementation. Amazon's expertise and the gradient descent algorithm Amazon has been using machine learning for the retail side of its business and has built a serious expertise in predictive analytics. This expertise translates into the choice of algorithm powering the Amazon ML service. The Stochastic Gradient Descent (SGD) algorithm is the algorithm powering Amazon ML linear models and is ultimately responsible for the accuracy of the predictions generated by the service. The SGD algorithm is one of the most robust, resilient, and optimized algorithms. It has been used in many diverse environments, from signal processing to deep learning and for a wide variety of problems, since the 1960s with great success. The SGD has also given rise to many highly efficient variants adapted to a wide variety of data contexts. We will come back to this important algorithm in a later chapter; suffice it to say at this point that the SGD algorithm is the Swiss army knife of all possible predictive analytics algorithm. Several benchmarks and tests of the Amazon ML service can be found across the web (Amazon, Google, and Azure: https://blog.onliquid.com/machine-learning-services-2/ and Amazon versus scikit-learn: http://lenguyenthedat.com/minimal-data-science-2-avazu/). Overall results show that the Amazon ML performance is on a par with other MLaaS platforms, but also with scripted solutions based on popular machine learning libraries such as scikit-learn. For a given problem in a specific context and with an available dataset and a particular choice of a scoring metric, it is probably possible to code a predictive model using an adequate library and obtain better performances than the ones obtained with Amazon ML. But what Amazon ML offers is stability, an absence of coding, and a very solid benchmark record, as well as a seamless integration with the Amazon Web Services ecosystem that already powers a large portion of the Internet. Amazon ML service pricing strategy As with other MLaaS providers and AWS services, Amazon ML only charges for what you consume. The cost is broken down into the following: An hourly rate for the computing time used to build predictive models A prediction fee per thousand prediction samples And in the context of real-time (streaming) predictions, a fee based on the memory allocated upfront for the model The computational time increases as a function of the following: The complexity of the model The size of the input data The number of attributes The number and types of transformations applied At the time of writing, these charges are as follows: $0.42 per hour for data analysis and model building fees $0.10 per 1,000 predictions for batch predictions $0.0001 per prediction for real-time predictions $0.001 per hour for each 10 MB of memory provisioned for your model These prices do not include fees related to the data storage (S3, Redshift, or RDS), which are charged separately. During the creation of your model, Amazon ML gives you a cost estimation based on the data source that has been selected. The Amazon ML service is not part of the AWS free tier, a 12-month offer applicable to certain AWS services for free under certain conditions. To summarize, we presented a simple introduction to the Amazon ML service. Amazon ML is built on a solid ground, with a simple yet very efficient algorithm driving its predictions. If you found this post useful, be sure to check out the book  'Effective Amazon Machine Learning' to learn about predictive analytics and other concepts in AWS machine learning. Integrate applications with AWS services: Amazon DynamoDB & Amazon Kinesis [Tutorial] AWS makes Amazon Rekognition, its image recognition AI, available for Asia-Pacific developers AWS Elastic Load Balancing: support added for Redirects and Fixed Responses in Application Load Balancer
Read more
  • 0
  • 0
  • 9216
article-image-write-python-code-or-pythonic-code
Aaron Lazar
08 Aug 2018
5 min read
Save for later

Do you write Python Code or Pythonic Code?

Aaron Lazar
08 Aug 2018
5 min read
If you’re new to Programming, and Python in particular, you might have heard the term Pythonic being brought up at tech conferences, meetups and even at your own office. You might have also wondered why the term and whether they’re just talking about writing Python code. Here we’re going to understand what the term Pythonic means and why you should be interested in learning how to not just write Python code, rather write Pythonic code. What does Pythonic mean? When people talk about pythonic code, they mean that the code uses Python idioms well, that it’s natural or displays fluency in the language. In other words, it means the most widely adopted idioms that are adopted by the Python community. If someone said you are writing un-pythonic code, they might actually mean that you are attempting to write Java/C++ code in Python, disregarding the Python idioms and performing a rough transcription rather than an idiomatic translation from the other language. Okay, now that you have a theoretical idea of what Pythonic (and unpythonic) means, let’s have a look at some Pythonic code in practice. Writing Pythonic Code Before we get into some examples, you might be wondering if there’s a defined way/method of writing Pythonic code. Well, there is, and it’s called PEP 8. It’s the official style guide for Python. Example #1 x=[1, 2, 3, 4, 5, 6] result = [] for idx in range(len(x)); result.append(x[idx] * 2) result Output: [2, 4, 6, 8, 10, 12] Consider the above code, where you’re trying to multiply some elements, “x” by 2. So, what we did here was, we created an empty list to store the results. We would then append the solution of the computation into the result. The result now contains a function which is 2 multiplied by each of the elements. Now, if you were to write the same code in a Pythonic way, you might want to simply use list comprehensions. Here’s how: x=[1, 2, 3, 4, 5, 6] [(element * 2) for element in x] Output: [2, 4, 6, 8, 10] You might have noticed, we skipped the entire for loop! Example #2 Let’s make the previous example a bit more complex, and place a condition that the elements should be multiplied by 2 only if they are even. x=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] result = [] for idx in range(len(x)); if x[idx] % 2 == 0; result.append(x[idx] * 2) else; result.append(x[idx]) result Output: [1, 4, 3, 8, 5, 12, 7, 16, 9, 20] We’ve actually created an if else statement to solve this problem, but there is a simpler way of doing things the Pythonic way. [(element * 2 if element % 2 == 0 else element) for element in x] Output: [1, 4, 3, 8, 5, 12, 7, 16, 9, 20] If you notice what we’ve done here, apart from skipping multiple lines of code, is that we used the if-else statement in the same sentence. Now, if you wanted to perform filtering, you could do this: x=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] [element * 2 for element in x if element % 2 == 0] Output: [4, 8, 12, 16, 20] What we’ve done here is put the if statement after the for declaration, and Voila! We’ve achieved filtering. If you’re using a nice IDE like Jupyter Notebooks or PyCharm, they will help you format your code as per the PEP 8 suggestions. Why should you write Pythonic code? Well firstly, you’re saving loads of time writing humongous piles of cowdung code, so you’re obviously becoming a smarter and more productive programmer. Python is a pretty slow language, and when you’re trying to do something in Python, which is acquired from another language like Java or C++, you’re going to worsen things. With idiomatic, Pythonic code, you’re improving the speed of your programs. Moreover, idiomatic code is far easier to comprehend and understand for other developers who are working on the same code. It helps a great deal when you’re trying to refactor someone else’s code. Fearing Pythonic idioms Well, I don’t mean the idioms themselves are scary. Rather, quite a few developers and organisations have begun discriminating on the basis of whether someone can or cannot write Pythonic code. This is wrong, because, at the end of the day, though the PEP 8 exists, the idea of the term Pythonic is different for different people. To some it might mean picking up a new style guide and improving the way you code. To others, it might mean being succinct and not repeating themselves. It’s time we stopped judging people on whether they can or can’t write Pythonic code and instead, we should appreciate when someone is able to present readable, easily maintainable and succinct code. If you find them writing a bit of clumsy code, you can choose to talk to them about improving their design considerations. And the world will be a better place! If you’re interested in learning how to write more succinct and concise Python code, check out these resources: Learning Python Design Patterns - Second Edition Python Design Patterns [Video] Python Tips, Tricks and Techniques [Video]    
Read more
  • 0
  • 2
  • 24171

article-image-amazon-patents-2018-machine-learning-ar-robotics
Natasha Mathur
06 Aug 2018
7 min read
Save for later

Four interesting Amazon patents in 2018 that use machine learning, AR, and robotics

Natasha Mathur
06 Aug 2018
7 min read
"There are two kinds of companies, those that work to try to charge more and those that work to charge less. We will be the second."-- Jeff Bezos, CEO Amazon When Jeff Bezos launched Amazon.com in 1994, it was an online bookselling site. This was during a time when bookstores such as Barnes & Noble, Waldenbooks and Crown Books were the leading front runners in the bookstore industry in the American shopping malls. Today, Amazon’s name has become almost synonymous with online retail for most people and has now spread its wings to cloud computing, electronics, tech gadgets and the entertainment world. With market capitalization worth $897.47B as of August 3rd 2018, it’s hard to believe that there was a time when Amazon sold only books. Amazon is constantly pushing to innovate and as new inventions come to shape, there are “patents” made that helps the company have a competitive advantage over technologies and products in order to attract more customers. [box type="shadow" align="" class="" width=""]According to United States Patent and Trademark Office (USPTO), Patent is an exclusive right to invention and “the right to exclude others from making, using, offering for sale, or selling the invention in the United States or “importing” the invention into the United States”.[/box] As of March 20, 2018, Amazon owned 7,717 US patents filed under two business entities, Amazon Technologies, Inc. (7,679), and Amazon.com, Inc (38). Looking at the chart below, you can tell that Amazon Technologies, Inc., was one among the top 15 companies in terms of number of patents granted in 2017. Top 15 companies, by number of patents granted by USPTO, 2017 Amazon competes closely with the world’s leading tech giants in terms of patenting technologies. The below table only considers US patents. Here, Amazon holds only few US patents than IBM, Microsoft, Google, and Apple.  Number of US Patents Containing Emerging-Technology Keywords in Patent Description Some successfully patented Amazon innovations in 2018 There are thousands of inventions that Amazon is tied up with and for which they have filed for patents. These include employee surveillance AR goggles, a real-time accent translator, robotic arms tossing warehouse items,  one-click buying, drones,etc. Let’s have a look at these remarkable innovations by Amazon. AR goggles for improving human-driven fulfillment (or is it to track employees?) Date of Patent: August 2, 2018 Filed: March 20, 2017 Assignee: Amazon Technologies, Inc.   AR Goggles                                                          Features: Amazon has recently patented a pair of augmented reality goggles that could be used to keep track of its employees.The patent is titled “Augmented Reality User interface facilitating fulfillment.” As per the patent application, the application is a wearable computing device such as augmented reality glasses that are worn on user’s head. The user interface is rendered upon one or more lenses of the augmented reality glasses and it helps to show the workers where to place objects in Amazon's fulfillment centers. There’s also a feature in the AR glasses which provides workers with turn-by-turn directions to the destination within the fulfillment centre. This helps them easily locate the destination as all the related information gets rendered on the lenses.    AR Goggles  steps The patent has received criticism over concerns that this application might hamper the privacy of employees within the warehouses, tracking employees’ every single move. However, Amazon has defended the application by saying that it has got nothing to do with “employee surveillance”. As this is a patent, there’s no guarantee if it will actually hit the market. Robotic arms that toss warehouse items Date of Patent: July 17, 2018 Filed: September 29, 2015 Assignee: Amazon Technologies, Inc. Features: Amazon won a patent titled “Robotic tossing of items in inventory system” last month. As per the patent application, “Robotic arms or manipulators can be used to toss inventory items within an inventory system. Tossing strategies for the robotic arms may include information about how a grasped item is to be moved and released by a robotic arm to achieve a trajectory for moving the item to a receiving location”.  Robotic Arms Utilizing a robotic arm to toss an item to a receiving location can help improve throughput through the inventory system. This is possible as the robotic arms will help with reducing the amount of time that may otherwise be spent on placing a grasped item directly onto a surface for receiving the item. “The tossing strategy may be based at least in part upon a database containing information about the item, characteristics of the item, and/or similar items, such as information indicating tossing strategies that have been successful or unsuccessful for such items in the past,” the patent reads.  Robotic Arms Steps Amazon’s aim with this is to eliminate the challenges faced by modern inventory systems like supply chain distribution centers, airport luggage systems, etc, while responding to requests for inventory items. The patent received criticism over the concern that one of the examples in the application was a dwarf figurine and could possibly mock people of short stature. But, according to Amazon, “The intention was simply to illustrate a robotic arm moving products, and it should not be taken out of context.” Real-time accent translator Date of Patent: June 21, 2018 Filed: December 21, 2016 Assignee: Amazon Technologies, Inc. Features: Amazon won a patent for an audio system application, titled “Accent translation” back in June this year, which will help with translating the accent of the speaker to the listener’s accent. The aim with this app is to get rid of the possible communication barriers which may arise due to different accents as they can be difficult to understand at times. Accent translation system The accent translation system collects a number of audio samples from different sources such as phone call, television, movies, broadcasts, etc. Each audio sample will have its association with at least one of the accent sample sets present in its database.  For instance, german accent will be associated with the german accent sample set.   Accent translation system steps In a two-party dialog, acquired audio is analyzed and if it associates with one among a wide range of saved accents then the audio from both the sides is outputted based on the accent of the opposite party. The possibilities with this application are endless. One major use case is the customer care industry where people have to constantly talk to different people with different accents. Drone that uses Human gestures and voice commands Date of Patent: March 20, 2018 Filed: July 18, 2016 Assignee: Amazon Technologies, Inc. Features: Amazon patented for a drone, titled “Human interaction with unmanned aerial vehicles”, earlier this year, that would use human gestures and voice commands for package delivery. Amazon Drone makes use of propulsion technology which will help with managing the speed, trajectory, and direction of the drone.   Drones As per the patent application, “an unmanned aerial vehicle is provided which includes propulsion device, sensor device and a management system. The management system is configured to receive human gestures via the sensor device and in response, instruct the propulsion device to affect and adjustment to the behavior of the unnamed aerial vehicle. Human gestures include-- visible gestures, audible gestures, and other gestures capable of recognition by the unmanned vehicle”. Working structure of drones The concept for drones started when Amazon CEO, Jeff Bezos, promised, back in 2013, that the company aims to make 30-minute deliveries, of packages up to 2.25 kgs or 5 pounds. Amazon’s patents are a clear indication of its efforts and determination for inventing cutting-edge technologies for optimizing its operations so that it can pass on the benefits to its customers in the form of competitively priced product offerings. As Amazon has been putting its focus on machine learning, the drones and robotic arms will make the day-to-day tasks of the facility workers easier and more efficient. In fact, Amazon has stepped up its game big time and is incorporating Augmented reality, with its AR glasses to further scale efficiencies. The real-time accent translators help eliminate the communication barriers, making Amazon cover a wide range of areas and perhaps provide a seamless customer care experience in the coming days. Amazon Echo vs Google Home: Next-gen IoT war Amazon is selling facial recognition technology to police  
Read more
  • 0
  • 3
  • 9714

article-image-5g-mobile-data-propel-artificial-intelligence
Neil Aitken
02 Aug 2018
7 min read
Save for later

How 5G Mobile Data will propel Artificial Intelligence (AI) progress

Neil Aitken
02 Aug 2018
7 min read
Like it’s predecessors, 3G and 4G, 5G refers to the latest ‘G’ – Generation – of mobile technology. 5G will give us very fast - effectively infinitely fast - mobile data download bandwidth. Downloading a TV show to your phone over 5G, in its entirety, in HD, will take less than a second, for example. A podcast will be downloaded within a fraction of a second of you requesting it. Scratch the surface of 5G, however, and there is a great deal more to see than just fast mobile data speeds.  5G is the backbone on which a lot of emerging technologies such as AI, blockchains, IoT among others will reach mainstream adoption. Today, we look at how 5G will accelerate AI growth and adoption. 5G will create the data AI needs to thrive One feature of 5G with ramifications beyond data speed is ‘Latency.’ 5G offers virtually ‘Zero Latency’ as a service. Latency is the time needed to transmit a packet of data from one device to another. It includes the period of time between when the request was made, to the time the response is completed. [caption id="attachment_21251" align="aligncenter" width="580"] 5G will be superfast – but will also benefit from near zero ‘latency’[/caption] Source: Economist At the moment, we keep files (music, pictures or films) in our phones’ memory permanently. We have plenty of processing power on our devices. In fact, the main upgrade between phone generations these days is a faster processor. In a 5G world, we will be able to use cheap parts in our devices – processors and memory in our new phones. Data downloads will be so fast, that we can get them immediately when we need them. We won’t need to store information on the phone unless we want to.  Even if the files are downloaded from the cloud, because the network has zero latency – he or she feels like the files are on the phone. In other words, you are guaranteed a seamless user experience in a 5G world. The upshot of all this is that the majority of any new data which is generated from mobile products will move to the cloud for storage. At their most fundamental level, AI algorithms are pattern matching tools. The bigger the data trove, the faster and better performing the results of AI analysis is. These new structured data sets, created by 5G, will be available from the place where it is easiest to extract and manipulate (‘Analyze’) it – the cloud. There will be 100 billion 5G devices connected to cellular networks by 2025, according to Huawei. 5G is going to generate data from those devices, and all the smartphones in the world and send it all back to the cloud. That data is the source of the incredible power AI gives businesses. 5G driving AI in autonomous vehicles 5G’s features and this Cloud / Connected Device future, will manifest itself in many ways. One very visible example is how 5G will supercharge the contribution, especially to reliability and safety, that AI can make to self driving cars. A great deal of the AI processing that is required to keep a self driving car operating safely, will be done by computers on board the vehicle. However, 5G’s facilities to communicate large amounts of data quickly will mean that any unusual inputs (for example, the car is entering or in a crash situation) can be sent to bigger computing equipment on the cloud which could perform more serious processing. Zero latency is important in these situations for commands which might come from a centralized accident computer, designed to increase safety– for example issuing the command ‘break.’ In fact, according to manufacturers, it’s likely that, ultimately, groups of cars will be coordinated by AI using 5G to control the vehicles in a model known as swarm computing. 5G will make AI much more useful with ‘context’ - Intel 5G will power AI by providing location information which can be considered in establishing the context of questions asked of the tool – according to Intel’s Data Center Group. For example, asking your Digital Assistant where the tablets are means something different depending on whether you’re in a pharmacy or an electronics store. The nature of 5G is that it’s a mobile service. Location information is both key to context and an inherent element of information sent over a 5G connection. By communicating where they are, 5G sensors will help AI based Digital Assistants solve our everyday problems. 5G phones will enable  AI calculations on ‘Edge’ network devices  - ARM 5G will push some processing to the ‘Edge’ of the network, for manipulation by a growing range of AI chips on to the processors of phones. In this regard, smartphones like any Internet Of Things connected processor ‘in the field’ are simply an ‘AI platform’. Handset manufacturers are including new software features in their phones that customers love to use – including AI based search interfaces which allow them to search for images containing ‘heads’ and see an accurate list. [caption id="attachment_21252" align="aligncenter" width="1918"] Arm are designing new types of chips targeted at AI calculations on ‘Edge’ network devices.[/caption] Source: Arm's Project Trillium ARM, one of the world’s largest CPU producers are creating specific, dedicated AI chip sets, often derived from the technology that was behind their Graphics Processing Units. These chips process AI based calculations up to 50 times faster than standard microprocessors already and their performance is set to improve 50x over the next 3 years, according to the company. AI is part of 5G networks - Huawei Huawei describes itself as an AI company (as well as a number of other things including handset manufacturer.) They are one of the biggest electronic manufacturers in China and are currently in the process of selling networking products to the world’s telecommunications companies, as they prepare to roll out their 5G networks. Based on the insight that 70% of network system downtime comes from human error, Huawei is now eliminating humans from the network management component of their work, to the degree that they can. Instead, they’re implementing automated AI based predictive maintenance systems to increase data throughput across the network and reduce downtime. The way we use cellular networks is changing. Different applications require different backend traffic to be routed across the network, depending on the customer need. Someone watching video, for example, has a far lower tolerance for a disruption to the data throughput (the ‘stuttering Netflix’ effect) than a connected IoT sensor which is trying to communicate the temperature of a thermometer. Huawei’s network maintenance AI software optimizes these different package needs, maintaining the near zero latency that the standard demands at a lower cost. AI based network maintenance complete a virtuous loop in which 5G devices on new cellular networks give AI the raw data they need, including valuable context information, and AI helps the data flow across the 5G network better. Bringing it all together 5G and artificial intelligence (AI) are revolutionary technologies that will evolve alongside each other. 5G isn’t just fast data, it’s one of the most important technologies ever devised. Just as the smartphone did, it will fundamentally change how we relate to information, partly, because it will link us to thousands of newly connected devices on the Internet of Things. Ultimately, it could be the secondary effects of 5G, the network’s almost zero latency, which could provide the largest benefit – by creating structured data sets from billions of connected devices, in an easily accessible place – the cloud which can be used to fuel the AI algorithms which run on them. Networking equipment, chip manufacturers and governments have all connected the importance of AI with the potential of 5G. Commercial sales of 5G start in The US, UK and Australia in 2019. 7 Popular Applications of Artificial Intelligence in Healthcare Top languages for Artificial Intelligence development Cognitive IoT: How Artificial Intelligence is remoulding Industrial and Consumer IoT      
Read more
  • 0
  • 0
  • 5562
article-image-top-automl-libraries-for-building-ml-pipelines
Sunith Shetty
01 Aug 2018
9 min read
Save for later

Top AutoML libraries for building your ML pipelines

Sunith Shetty
01 Aug 2018
9 min read
What is AutoML? When talking about AutoML we mostly refer to automated data preparation (namely feature preprocessing, generation, and selection) and model training (model selection and hyperparameter optimization). The number of possible options for each step of this process can vary vastly depending on the problem type. AutoML allows researchers and practitioners to automatically build ML pipelines out of the possible options for every step to find high-performing ML models for a given problem. AutoML libraries carefully set up experiments for various ML pipelines, which covers all the steps from data ingestion, data processing, modeling, and scoring. In this article we deal with understanding what AutoML is and cover popular AutoML libraries with practical examples. This article is an excerpt from a book written by Sibanjan Das, Umit Mert Cakmak titled Hands-On Automated Machine Learning. Overview of AutoML libraries There are many popular AutoML libraries, and in this section you will get an overview of commonly used ones in the data science community. Featuretools Featuretools is a good library for automatically engineering features from relational and transactional data. The library introduces the concept called Deep Feature Synthesis (DFS). If you have multiple datasets with relationships defined among them such as parent-child based on columns that you use as unique identifiers for examples, DFS will create new features based on certain calculations, such as summation, count, mean, mode, standard deviation, and so on. Let's go through a small example where you will have two tables, one showing the database information and the other showing the database transactions for each database: import pandas as pd # First dataset contains the basic information for databases. databases_df = pd.DataFrame({"database_id": [2234, 1765, 8796, 2237, 3398], "creation_date": ["2018-02-01", "2017-03-02", "2017-05-03", "2013-05-12", "2012-05-09"]}) databases_df.head() You get the following output: The following is the code for the database transaction: # Second dataset contains the information of transaction for each database id db_transactions_df = pd.DataFrame({"transaction_id": [26482746, 19384752, 48571125, 78546789, 19998765, 26482646, 12484752, 42471125, 75346789, 16498765, 65487547, 23453847, 56756771, 45645667, 23423498, 12335268, 76435357, 34534711, 45656746, 12312987], "database_id": [2234, 1765, 2234, 2237, 1765, 8796, 2237, 8796, 3398, 2237, 3398, 2237, 2234, 8796, 1765, 2234, 2237, 1765, 8796, 2237], "transaction_size": [10, 20, 30, 50, 100, 40, 60, 60, 10, 20, 60, 50, 40, 40, 30, 90, 130, 40, 50, 30], "transaction_date": ["2018-02-02", "2018-03-02", "2018-03-02", "2018-04-02", "2018-04-02", "2018-05-02", "2018-06-02", "2018-06-02", "2018-07-02", "2018-07-02", "2018-01-03", "2018-02-03", "2018-03-03", "2018-04-03", "2018-04-03", "2018-07-03", "2018-07-03", "2018-07-03", "2018-08-03", "2018-08-03"]}) db_transactions_df.head() You get the following output: The code for the entities is as follows: # Entities for each of datasets should be defined entities = { "databases" : (databases_df, "database_id"), "transactions" : (db_transactions_df, "transaction_id") } # Relationships between tables should also be defined as below relationships = [("databases", "database_id", "transactions", "database_id")] print(entities) You get the following output for the preceding code: The following code snippet will create feature matrix and feature definitions: # There are 2 entities called ‘databases’ and ‘transactions’ # All the pieces that are necessary to engineer features are in place, you can create your feature matrix as below import featuretools as ft feature_matrix_db_transactions, feature_defs = ft.dfs(entities=entities, relationships=relationships, target_entity="databases") The following output shows some of the features that are generated: You can see all feature definitions by looking at the following features_defs: feature_defs The output is as follows: This is how you can easily generate features based on relational and transactional datasets. Auto-sklearn Scikit-learn has a great API for developing ML models and pipelines. Scikit-learn's API is very consistent and mature; if you are used to working with it, auto-sklearn will be just as easy to use since it's really a drop-in replacement for scikit-learn estimators. Let's see a little example: # Necessary imports import autosklearn.classification import sklearn.model_selection import sklearn.datasets import sklearn.metrics from sklearn.model_selection import train_test_split # Digits dataset is one of the most popular datasets in machine learning community. # Every example in this datasets represents a 8x8 image of a digit. X, y = sklearn.datasets.load_digits(return_X_y=True) # Let's see the first image. Image is reshaped to 8x8, otherwise it's a vector of size 64. X[0].reshape(8,8) The output is as follows: You can plot a couple of images to see how they look: import matplotlib.pyplot as plt number_of_images = 10 images_and_labels = list(zip(X, y)) for i, (image, label) in enumerate(images_and_labels[:number_of_images]): plt.subplot(2, number_of_images, i + 1) plt.axis('off') plt.imshow(image.reshape(8,8), cmap=plt.cm.gray_r, interpolation='nearest') plt.title('%i' % label) plt.show() Running the preceding snippet will give you the following plot: Splitting the dataset to train and test data: # We split our dataset to train and test data X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) # Similarly to creating an estimator in Scikit-learn, we create AutoSklearnClassifier automl = autosklearn.classification.AutoSklearnClassifier() # All you need to do is to invoke fit method to start experiment with different feature engineering methods and machine learning models automl.fit(X_train, y_train) # Generating predictions is same as Scikit-learn, you need to invoke predict method. y_hat = automl.predict(X_test) print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat)) # Accuracy score 0.98 That was easy, wasn't it? MLBox MLBox is another AutoML library that supports distributed data processing, cleaning, formatting, and state-of-the-art algorithms such as LightGBM and XGBoost. It also supports model stacking, which allows you to combine an information ensemble of models to generate a new model aiming to have better performance than the individual models. Here's an example of its usage: # Necessary Imports from mlbox.preprocessing import * from mlbox.optimisation import * from mlbox.prediction import * import wget file_link = 'https://apsportal.ibm.com/exchange-api/v1/entries/8044492073eb964f46597b4be06ff5ea/data?accessKey=9561295fa407698694b1e254d0099600' file_name = wget.download(file_link) print(file_name) # GoSales_Tx_NaiveBayes.csv The GoSales dataset contains information for customers and their product preferences: import pandas as pd df = pd.read_csv('GoSales_Tx_NaiveBayes.csv') df.head() You get the following output from the preceding code: Let's create a test set from the same dataset by dropping a target column: test_df = df.drop(['PRODUCT_LINE'], axis = 1) # First 300 records saved as test dataset test_df[:300].to_csv('test_data.csv') paths = ["GoSales_Tx_NaiveBayes.csv", "test_data.csv"] target_name = "PRODUCT_LINE" rd = Reader(sep = ',') df = rd.train_test_split(paths, target_name) The output will be similar to the following: Drift_thresholder will help you to drop IDs and drifting variables between train and test datasets: dft = Drift_thresholder() df = dft.fit_transform(df) You get the following output: Optimiser will optimize the hyperparameters: opt = Optimiser(scoring = 'accuracy', n_folds = 3) opt.evaluate(None, df) You get the following output by running the preceding code: The following code defines the parameters of the ML pipeline: space = { 'ne__numerical_strategy':{"search":"choice", "space":[0]}, 'ce__strategy':{"search":"choice", "space":["label_encoding","random_projection", "entity_embedding"]}, 'fs__threshold':{"search":"uniform", "space":[0.01,0.3]}, 'est__max_depth':{"search":"choice", "space":[3,4,5,6,7]} } best = opt.optimise(space, df,15) The following output shows you the selected methods that are being tested by being given the ML algorithms, which is LightGBM in this output: You can also see various measures such as accuracy, variance, and CPU time: Using Predictor, you can use the best model to make predictions: predictor = Predictor() predictor.fit_predict(best, df) You get the following output: TPOT Tree-Based Pipeline Optimization Tool (TPOT) uses genetic programming to find the best performing ML pipelines, built on top of scikit-learn. Once your dataset is cleaned and ready to be used, TPOT will help you with the following steps of your ML pipeline: Feature preprocessing Feature construction and selection Model selection Hyperparameter optimization Once TPOT is done with its experimentation, it will provide you with the best performing pipeline. TPOT is very user-friendly as it's similar to using scikit-learn's API: from tpot import TPOTClassifier from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split # Digits dataset that you have used in Auto-sklearn example digits = load_digits() X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, train_size=0.75, test_size=0.25) # You will create your TPOT classifier with commonly used arguments tpot = TPOTClassifier(generations=10, population_size=30, verbosity=2) # When you invoke fit method, TPOT will create generations of populations, seeking best set of parameters. Arguments you have used to create TPOTClassifier such as generations and population_size will affect the search space and resulting pipeline. tpot.fit(X_train, y_train) print(tpot.score(X_test, y_test)) # 0.9834 tpot.export('my_pipeline.py') Once you have exported your pipeline in the Python my_pipeline.py file, you will see the selected pipeline components: import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # NOTE: Make sure that the class is labeled 'target' in the data file tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64) features = tpot_data.drop('target', axis=1).values training_features, testing_features, training_target, testing_target = train_test_split(features, tpot_data['target'].values, random_state=42) exported_pipeline = KNeighborsClassifier(n_neighbors=6, weights="distance") exported_pipeline.fit(training_features, training_target) results = exported_pipeline.predict(testing_features) To summarize, you learnt about Automated ML and practiced your skills using popular AutoML libraries. This is definitely not the whole list, and AutoML is an active area of research. You should check out other libraries such as Auto-WEKA, which also uses the latest innovations in Bayesian optimization, and Xcessive, which is a user-friendly tool for creating stacked ensembles. To know how AutoML can be further used to automate parts of Machine Learning, check out the book Hands-On Automated Machine Learning. Read more Anatomy of an automated machine learning algorithm (AutoML) AutoML: Developments and where is it heading to AmoebaNets: Google’s new evolutionary AutoML
Read more
  • 0
  • 0
  • 10065

article-image-earn-1m-per-year-hint-learn-machine-learning
Neil Aitken
01 Aug 2018
10 min read
Save for later

How to earn $1m per year? Hint: Learn machine learning

Neil Aitken
01 Aug 2018
10 min read
Internet job portal ‘Indeed.com’ links potential employers with people who are looking to take the next step in their careers. The proportion of job posts on their site, relating to ‘Data Science’, a specific job in the AI category, is growing fast (see chart below). More broadly, Artificial Intelligence & machine learning skills, of which ‘Data Scientist’ is just one example, are in demand. No wonder that it has been termed as the sexiest job role of the 21st century. Interest comes from an explosion of jobs in the field from big companies and Start-Ups, all of which are competing to come up with the best AI business and to earn the money that comes with software that automates tasks. The skills shortage associated with Artificial Intelligence represents an opportunity for any developer. There has never been a better time to consider whether reskilling or upskilling in AI could be a lucrative path for you. Below : Indeed.com. Proportion of job postings containing Data Scientist or Data Science. [caption id="attachment_21240" align="aligncenter" width="1525"] Artificial Intelligence skills are increasingly in demand and create a real opportunity for those prepared to reskill or upskill.[/caption] Source: Indeed  The AI skills gap the market is experiencing comes from the difficulty associated with finding an individual demonstrating a competent mixture of the very disparate faculties that AI roles require. Artificial Intelligence and it’s near equivalents such as Machine Learning and Neural Networks operate at the intersection of what have mostly been two very different disciplines – statistics and software development. In simple terms, they are half coding, half maths. Hamish Ogilvy, CEO of AI based Internal Search company Sajari is all too familiar with the problem. He’s on the front line, hiring AI developers. “The hardest part”, says Ogilvy, “is that AI is pretty complex and the average developer/engineer does not have the background in maths/stats/science to actually understand what is happening. On the flip side the trouble with the stats/maths/science people is that they typically can't code, so finding people in that sweet spot that have both is pretty tough.” He’s right. The New York Times suggests that the pool of qualified talent is only 10,000 people, worldwide. Those who do have jobs are typically happily ensconced, paid well, treated appropriately and given no reason whatsoever to want to leave. [caption id="attachment_21244" align="aligncenter" width="1920"] Judged by $ investments in the area alone, AI skills are worth developing for those wishing to stay current on technology skills.[/caption] In fact, an instinct to develop AI skills will serve any technology employee well. No One can have escaped the many estimates, from reputable consultancies, suggesting that Automation will replace up to 30% of jobs in the next 10 years. No job is safe. Every industry is touched by AI in some form. Any responsible individual with a view to the management of their own skills could learn ML and AI skills to stay relevant in current times. Even if you don't want to move out of your current job, learning ML will probably help you adapt better in your industry. What is a typical AI job and what will it pay? OpenAI, a world class Artificial Intelligence research laboratory, revealed the salaries of some of its key Data Science employees recently. Those working in the AI field with a specialization can earn $300 to $500k in their first year out of university. Experts in Artificial Intelligence now command salaries of up to $1m. [caption id="attachment_21242" align="aligncenter" width="432"] The New York Times observes AI salaries[/caption] [caption id="attachment_21241" align="aligncenter" width="1121"] The New York Times observes AI salaries[/caption] Source: The New York times Indraneil Roy, an Expert in AI and Talent Acquisition who works for Edge Networks puts it this way when outlining the difficulties of hiring the right skills and to explain why wages in the field are so high. “The challenge is the quality of resources. As demand is high for this skill, we are already seeing candidates with fake experience and work pedigree not up to standards.” The phenomenon is also causing a ‘brain drain’ in Universities. About a third of jobs in the AI field will go to someone with a Ph.D., and all of those are drawn from universities working on the discipline, often lured by the significant pay packages which are available. So, with huge demand and the universities drained, where will future AI employees come from? 3 ways to skill up to become an AI expert (And earn all that money?) There is still not a lot of agreed terminology or even job roles and responsibility in the sector. However, some things are clear. Those wishing to evolve in to the field of AI must understand the conceptual thinking involved, as a starting point, whether that view is found on the job or as part of an informal / formal educational course. Specifically, most jobs in the specialty require a working knowledge of neural networks, data / analytics, predictive analytics, with some basic programming and database skills. There are some great resources available online to train you up. Most, as you’d expect, are available on your smartphone so there really is no excuse for not having a look. 1. Free online course: Machine Learning & Statistics and probability Hamish Ogilvy summed the online education which is available in the area well. There are “so many free courses now on AI from Stanford,” he said, “that people are able to educate themselves and make up for the failings of antiquated university courses. AI is just maths really,” he says “complex models and stats. So that's what people need grounding in to be successful.” Microsoft offer free AI courses for technical professionals: Microsoft’s training materials are second to none. They’re also provided free and provide a shortcut to a credible understanding in an area simply because it comes from a technical behemoth. Importantly, they also have a list of AI services which you can play with, again for free. For example, a Natural Language engine offers a facility for you to submit text from Instant Messaging conversations and establish the sentiment being felt by the writer. Practical experience of the tools, processes and concepts involved will set you apart. See below. [caption id="attachment_21245" align="aligncenter" width="1999"] Check out Microsoft’s free AI training program for developers.[/caption] Google are taking a proactive stance on Machine Learning. They see it’s potential to improve efficiency in every industry and also offer free ML training courses on their site. 2. Take courses on AI/ML Packt’s machine learning courses, books and videos: Packt is working towards a mission to help the world put software to work in new ways, through the delivery of effective learning and information services to IT professionals. It has published over 6,000 books and videos so far, providing IT professionals with the actionable knowledge they need to get the job done - whether that's specific learning on an emerging technology or optimizing key skills in more established tools. You can choose from a variety of Packt’s books, videos and courses for AI/ML. Here’s a list of top ones: Artificial Intelligence by Example [Book] Artificial Intelligence for Big data [Book] Learn Artificial Intelligence with TensorFlow [Video] Introduction to Artificial Intelligence with Java [Video] Advanced Artificial Intelligence Projects with Python [Video] Python Machine learning - Second Edition [Book] Machine Learning with R - Second Edition [Book] Coursera’s machine learning courses Coursera is a company which make training courses, for a variety of subjects, available online. Taken from actual University course content and delivered with tests, videos and training notes, all accessed online, each course is roughly a University Module. Students pick up an ‘up to under-graduate’ level of understanding of the content involved. Coursera’s courses are often cited as merit worthy and are recognizable in the industry. Costs vary but are typically between $2k and $5k per course. 3. Learn by doing Familiarize yourself with relevant frameworks and tools including Tensor Flow, Python and Keras. TensorFlow from Google is the most used open source AI software library. You can use existing code in your experiments and experiment with neural networks in much the same way as you can in Microsoft’s. Python is a programming language written for a big data world. Its proponents will tell you that Python saves developers hundreds of lines of code, allowing you to tie together information and systems faster than ever before. Python is used extensively in ML and AI applications and should be at the top of your study list. Keras, a deep learning library is similarly ubiquitous. It’s a high level Neural Network API designed to allow prototyping of your software as fast as possible. Finally, a lesser known but still valuable resources is the Accord.net. It is one final example of the many  software elements with which you can engage with to train yourself up. Accord Framework.net will expose you to image libraries, natural learning and real time facial recognition. Earn extra points with employers AI has several lighthouse tasks which are proving the potential of the technology in these still early stages. We’ve included a couple of examples, Natural Language processing and image recognition, above. Practical expertise in these areas specifically, image or voice recognition or pattern matching are valued highly by employers. Alternatively, have you patented something? A registered patent in your name is highly prized. Especially something to do with Machine Learning. Both will help you showcase Extra skills / achievements that will help your application.’ The specifics of how to apply for patents differ by country but you can find out more about the overall principles of how to submit an idea here. Passion and engagement in the subject are also, clearly appealing characteristics for potential employers to see in applicants. Participating in competitions like Kaggle, and having a portfolio of projects you can showcase on facilities like GitHub are also well prized. Of all of these suggestions, for those employed, any on the job experience you can get will stand you in the best stead. Indraneil says "Individual candidates need to spend more time doing relevant projects while in employment. Start ups involved in building products and platforms on AI seem to have better talent." The fact that there are not many AI specialists around is a bad sign There is a demand for employees with AI skills and an investment in relevant training may pay you well. Unfortunately, the underlying problem this situation reveals could be far worse than the problems experienced so far. Together, once found, all these AI scientists are going to automate millions of jobs, in every industry, in every country around the world. If Industry, Governments and Universities cannot train enough people to fill the roles being created by an evolving skills market, we may rightly be concerned to worry about how they will deal with retraining all those displaced by AI, for whom there may be no obvious replacement role available. 18 striking AI Trends to watch in 2018 – Part 1 DeepMind, Elon Musk, and others pledge not to build lethal AI Attention designers, Artificial Intelligence can now create realistic virtual textures
Read more
  • 0
  • 0
  • 19941