Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern C++ Programming Cookbook

You're reading from   Modern C++ Programming Cookbook Master Modern C++ with comprehensive solutions for C++23 and all previous standards

Arrow left icon
Product type Paperback
Published in Feb 2024
Publisher Packt
ISBN-13 9781835080542
Length 816 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Marius Bancila Marius Bancila
Author Profile Icon Marius Bancila
Marius Bancila
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Learning Modern Core Language Features FREE CHAPTER 2. Working with Numbers and Strings 3. Exploring Functions 4. Preprocessing and Compilation 5. Standard Library Containers, Algorithms, and Iterators 6. General-Purpose Utilities 7. Working with Files and Streams 8. Leveraging Threading and Concurrency 9. Robustness and Performance 10. Implementing Patterns and Idioms 11. Exploring Testing Frameworks 12. C++ 20 Core Features 13. Other Books You May Enjoy
14. Index

Finding alternatives for recursive mutexes

The standard library provides several mutex types for protecting access to shared resources. std::recursive_mutex and std::recursive_timed_mutex are two implementations that allow you to use multiple locking in the same thread. A typical use for a recursive mutex is to protect access to a shared resource from a recursive function. A std::recursive_mutex class may be locked multiple times from a thread, either with a call to lock() or try_lock(). When a thread locks an available recursive mutex, it acquires its ownership; as a result of this, consecutive attempts to lock the mutex from the same thread do not block the execution of the thread, creating a deadlock. The recursive mutex is, however, released only when an equal number of calls to unlock() are made. Recursive mutexes may also have a greater overhead than non-recursive mutexes. For these reasons, when possible, they should be avoided. This recipe presents a use case for transforming...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime