When we discussed the Gaussian mixture algorithm, we defined it as Soft K-means. The reason is that each cluster was represented by three elements: mean, variance, and weight. Each sample always belongs to all clusters with a probability provided by the Gaussian distributions. This approach can be very useful when it's possible to manage the probabilities as weights, but in many other situations, it's preferable to determine a single cluster per sample. Such an approach is called hard clustering and K-means can be considered the hard version of a Gaussian mixture. In fact, when all variances Σi → 0, the distributions degenerate to Dirac's Deltas, which represent perfect spikes centered at a specific point. In this scenario, the only possibility to determine the most appropriate cluster is to find the shortest distance between...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia