Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Linux Kernel Programming

You're reading from   Linux Kernel Programming A comprehensive guide to kernel internals, writing kernel modules, and kernel synchronization

Arrow left icon
Product type Paperback
Published in Mar 2021
Publisher Packt
ISBN-13 9781789953435
Length 754 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Kaiwan N. Billimoria Kaiwan N. Billimoria
Author Profile Icon Kaiwan N. Billimoria
Kaiwan N. Billimoria
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: The Basics
2. Kernel Workspace Setup FREE CHAPTER 3. Building the 5.x Linux Kernel from Source - Part 1 4. Building the 5.x Linux Kernel from Source - Part 2 5. Writing Your First Kernel Module - LKMs Part 1 6. Writing Your First Kernel Module - LKMs Part 2 7. Section 2: Understanding and Working with the Kernel
8. Kernel Internals Essentials - Processes and Threads 9. Memory Management Internals - Essentials 10. Kernel Memory Allocation for Module Authors - Part 1 11. Kernel Memory Allocation for Module Authors - Part 2 12. The CPU Scheduler - Part 1 13. The CPU Scheduler - Part 2 14. Section 3: Delving Deeper
15. Kernel Synchronization - Part 1 16. Kernel Synchronization - Part 2 17. About Packt 18. Other Books You May Enjoy

When does the scheduler run?

The job of the OS scheduler is to arbitrate access to the processor (CPU) resource, sharing it between competing entities (threads) that want to use it. But what if the system is busy, with many threads continually competing for and acquiring the processor? More correctly, what we're really getting at is: in order to ensure fair sharing of the CPU resource between tasks, you must ensure that the policeman in the picture, the scheduler itself, runs periodically on the processor. Sounds good, but how exactly can you ensure that?

Here's a (seemingly) logical way to go about it: invoke the scheduler when the timer interrupt fires; that is, it gets a chance to run CONFIG_HZ times a second (which is often set to the value 250)! Hang on, though, we learned a golden rule in Chapter 8Kernel Memory Allocation for Module Authors – Part 1, in the Never sleep in interrupt or atomic contexts section: you cannot invoke the scheduler...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image