Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Extending Power BI with Python and R

You're reading from   Extending Power BI with Python and R Perform advanced analysis using the power of analytical languages

Arrow left icon
Product type Paperback
Published in Mar 2024
Publisher Packt
ISBN-13 9781837639533
Length 814 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Luca Zavarella Luca Zavarella
Author Profile Icon Luca Zavarella
Luca Zavarella
Arrow right icon
View More author details
Toc

Table of Contents (27) Chapters Close

Preface 1. Where and How to Use R and Python Scripts in Power BI FREE CHAPTER 2. Configuring R with Power BI 3. Configuring Python with Power BI 4. Solving Common Issues When Using Python and R in Power BI 5. Importing Unhandled Data Objects 6. Using Regular Expressions in Power BI 7. Anonymizing and Pseudonymizing Your Data in Power BI 8. Logging Data from Power BI to External Sources 9. Loading Large Datasets Beyond the Available RAM in Power BI 10. Boosting Data Loading Speed in Power BI with Parquet Format 11. Calling External APIs to Enrich Your Data 12. Calculating Columns Using Complex Algorithms: Distances 13. Calculating Columns Using Complex Algorithms: Fuzzy Matching 14. Calculating Columns Using Complex Algorithms: Optimization Problems 15. Adding Statistical Insights: Associations 16. Adding Statistical Insights: Outliers and Missing Values 17. Using Machine Learning without Premium or Embedded Capacity 18. Using SQL Server External Languages for Advanced Analytics and ML Integration in Power BI 19. Exploratory Data Analysis 20. Using the Grammar of Graphics in Python with plotnine 21. Advanced Visualizations 22. Interactive R Custom Visuals 23. Other Books You May Enjoy
24. Index
Appendix 1: Answers
1. Appendix 2: Glossary

Summary

This chapter has given a detailed overview of all the ways in which you can use R and Python scripts in Power BI Desktop. During the data ingestion and data transformation phases, Power Query Editor allows you to add steps containing R or Python code. You can also make use of these analytical languages during the data visualization phase thanks to the R and Python script visuals provided by Power BI Desktop.

It is also very important to know how the R and Python code will interact with the data already loaded or being loaded in Power BI. If you use Power Query Editor, both when loading and transforming data, the result of script processing will be persisted in the data model. Also, if you want to run the same scripts again, you have to refresh the data. On the other hand, if you use the R and Python script visuals, the code results can only be displayed and are not persisted in the data model. In this case, script execution occurs whenever cross-filtering is triggered via the other visuals in the report.

Unfortunately, at the time of writing, you cannot run R and Python scripts in every Power BI product. The only ones that provide for running analytics scripts are Power BI Desktop and the Power BI service.

In the next chapter, we will see how best to configure the R engine and RStudio to integrate with Power BI Desktop.

You have been reading a chapter from
Extending Power BI with Python and R - Second Edition
Published in: Mar 2024
Publisher: Packt
ISBN-13: 9781837639533
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime