Search icon CANCEL
Subscription
0
Cart icon
Close icon
You have no products in your basket yet
Save more on your purchases!
Savings automatically calculated. No voucher code required
Arrow left icon
All Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletters
Free Learning
Arrow right icon
Mastering Reinforcement Learning with Python

You're reading from  Mastering Reinforcement Learning with Python

Product type Book
Published in Dec 2020
Publisher Packt
ISBN-13 9781838644147
Pages 544 pages
Edition 1st Edition
Languages
Author (1):
Enes Bilgin Enes Bilgin
Profile icon Enes Bilgin

Table of Contents (24) Chapters

Preface 1. Section 1: Reinforcement Learning Foundations
2. Chapter 1: Introduction to Reinforcement Learning 3. Chapter 2: Multi-Armed Bandits 4. Chapter 3: Contextual Bandits 5. Chapter 4: Makings of a Markov Decision Process 6. Chapter 5: Solving the Reinforcement Learning Problem 7. Section 2: Deep Reinforcement Learning
8. Chapter 6: Deep Q-Learning at Scale 9. Chapter 7: Policy-Based Methods 10. Chapter 8: Model-Based Methods 11. Chapter 9: Multi-Agent Reinforcement Learning 12. Section 3: Advanced Topics in RL
13. Chapter 10: Introducing Machine Teaching 14. Chapter 11: Achieving Generalization and Overcoming Partial Observability 15. Chapter 12: Meta-Reinforcement Learning 16. Chapter 13: Exploring Advanced Topics 17. Section 4: Applications of RL
18. Chapter 14: Solving Robot Learning 19. Chapter 15: Supply Chain Management 20. Chapter 16: Personalization, Marketing, and Finance 21. Chapter 17: Smart City and Cybersecurity 22. Chapter 18: Challenges and Future Directions in Reinforcement Learning 23. Other Books You May Enjoy

Chapter 6: Deep Q-Learning at Scale

In the previous chapter, we covered dynamic programming (DP) methods to solve Markov decision processes, and then mentioned that they suffer two important limitations: DP i) assumes complete knowledge of the environment's reward and transition dynamics; ii) uses tabular representations of state and actions, which is not scalable as the number of possible state-action combinations is too big in many realistic applications. We have addressed the former by introducing the Monte Carlo (MC) and temporal-difference (TD) methods, which learn from their interactions with the environment (often in simulation) without needing to know the environment dynamics. On the other hand, the latter is yet to be addressed, and this is where deep learning comes in. Deep reinforcement learning (deep RL or DRL) is about utilizing neural networks' representational power to learn policies for a wide variety of situations.

As great as it sounds, though, it is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €14.99/month. Cancel anytime}