Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon

How-To Tutorials - Mobile

213 Articles
article-image-firebase-nativescript-cross-platform-app-development
Savia Lobo
22 May 2018
16 min read
Save for later

How to integrate Firebase with NativeScript for cross-platform app development

Savia Lobo
22 May 2018
16 min read
NativeScript is now considered as one of the hottest platforms attracting developers. By using XML, JavaScript (also Angular), minor CSS for the visual aspects, and the magical touch of incorporating native SDKs, the platform has adopted the best of both worlds. Plus, this allows applications to be cross-platform, which means your application can run on both Android and iOS! In this tutorial, we're going to see how we can use Firebase to create some awesome native applications. This article is an excerpt taken from the book,' Firebase Cookbook', written by Houssem Yahiaoui. Getting started with NativeScript project In order to start a NativeScript project, we will need to make our development environment Node.js ready. So, in order to do so, let's download Node.js. Head directly to https://nodejs.org/en/download/ and download the most suitable version for your OS. After you have successfully installed Node.js, you will have two utilities. One is the Node.js executable and the other will be npm or the node package manager. This will help us download our dependencies and install NativeScript locally. How to do it... In your terminal/cmd of choice, type the following command: ~> npm install -g nativescript After installing NativeScript, you will need to add some dependencies. To know what your system is missing, simply type the following command: ~> tns doctor This command will test your system and make sure that everything is in place. If not, you'll get the missing parts. In order to create a new project, you will have many options to choose from. Those options could be creating a new project with vanilla JavaScript, with Typescript, from a template, or even better, using Angular. Head directly to your working directory and type the following command: ~> tns create <application-name> This command will initialize your project and install the basic needed dependencies. With that done, we're good to start working on our NativeScript project. Adding the Firebase plugin to our application One of NativeScript's most powerful features is the possibility of incorporating truly native SDKs. So, in this context, we can install the Firebase NativeScript on Android using the normal Gradle installation command. You can also do it on iOS via a Podfile if you are running macOS and want to create an iOS application along the way. However, the NativeScript ecosystem is pluggable, which means the ecosystem has plugins that extend certain functionalities. Those plugins usually incorporate native SDKs and expose the functionalities using JavaScript so we can exploit them directly within our application. In this recipe, we're going to use the wonderfully easy-to-use Eddy Verbruggen Firebase plugin, so let's see how we can add it to our project. How to do it... Head to your terminal/cmd of choice, type the following command, and hit Return/Enter respectively: tns plugin add nativescript-plugin-firebase This command will install the necessary plugin and do the required configuration. To find out the id, open your package.json file where you will find the NativeScript value: "nativescript": { "id": "org.nativescript.<your-app-name>" } Copy the id that you found in the preceding step and head over to your Firebase project console. Create a new Android/iOS application and paste that ID over your bundle name. Download the google-service.json/GoogleServices-Info.plist files and paste google-server.json in your app/Application_Resources/Android folder if you created an Android project. If you've created an iOS project, then paste the GoogleServices-Info.plist in the app/Application_Resources/iOS folder. Pushing/retrieving data from the Firebase Real-time Database Firebase stores data in a link-based manner that allows you to add and query the information really simple. The NativeScript Firebase plugin makes the operation much simpler with an easy-to-use API. So, let's discover how we can perform such operations. In this recipe, we're going to see how we can add and retrieve data in NativeScript and Firebase. Before we begin, we need to make sure that our application is fully configured with Firebase. You will also need to initialize the Firebase plugin with the application. To do that, open your project, head to your app.js file, and add the following import code: var firebase = require("nativescript-plugin- firebase"); This will import the Firebase NativeScript plugin. Next, add the following lines of code: firebase.init({}).then((instance) => { console.log("[*] Firebase was successfully initialised"); }, (error) => { console.log("[*] Huston we've an initialization error: " + error); }); The preceding code will simply go and initialize Firebase within our application. How to do it... After initializing our application, let's see how we can push some data to our Firebase Realtime Database. Let's start first by adding our interface, which will look similar to the one (Figure 1): Figure 1: Ideas adding page. The code behind it is as follows, and you can use this to implement the addition of new data to your bucket: <Page xmlns="http://schemas.nativescript.org/tns.xsd" navigatingTo="onNavigatingTo" class="page"> <Page.actionBar> <ActionBar title="Firebase CookBook" class="action-bar"> </ActionBar> </Page.actionBar> <StackLayout class="p-20"> <TextField text="{{ newIdea }}" hint="Add here your shiny idea"/> <Button text="Add new idea to my bucket" tap="{{ addToMyBucket }}" </span>class</span>="btn btn-primary btn- active"/> </StackLayout> </Page> Now let's see the JavaScript related to this UI for our behavior. Head to your view-model and add the following snippets inside the createViewModel function: viewModel.addToMyBucket = () => { firebase.push('/ideas', { idea: viewModel.newIdea }).then((result) => { console.log("[*] Info : Your data was pushed !"); }, (error) => { console.log("[*] Error : While pushing your data to Firebase, with error: " + error); }); } If you check your Firebase database, you will find your new entry present there. Once your data is live, you will need to think of a way to showcase all your shiny, new ideas. Firebase gave us a lovely event that we shall listen to whenever a new child element is created. The following code teaches you how to create the event for showcasing the addition of new child elements: var onChildEvent = function(result) { console.log("Idea: " + JSON.stringify(result.value)); }; firebase.addChildEventListener(onChildEvent, "/ideas").then((snapshot) => { console.log("[*] Info : We've some data !"); }); After getting the newly-added child, it's up to you to find the proper way to bind your ideas. They are mainly going to be either lists or cards, but they could be any of the previously mentioned ones. To run and experience your new feature, use the following command: ~> tns run android # for android ~> tns run ios # for ios How it works... So what just happened? We defined a basic user interface that will serve us by adding those new ideas to our Firebase console application. Next, the aim was to save all that information inside our Firebase Realtime Database using the same schema that Firebase uses. This is done via specifying a URL where all your information will be stored and then specifying the data schema. This will finally hold and define the way our data will be stored. We then hooked a listener to our data URL using firebase.addChildEventListener. This will take a function where the next item will be held and the data URL that we want our listener hook to listen on. In case you're wondering how this module or service works in NativeScript, the answer is simple. It's due to the way NativeScript works; because one of NativeScript's powerful features is the ability to use native SDKs. So in this case, we're using and implementing the Firebase Database Android/iOS SDKs for our needs, and the plugin APIs we're using are the JavaScript abstraction of how we want to exploit our native calls. Authenticating using anonymous or password authentication As we all know, Firebase supports both anonymous and password-based authentication, each with its own, suitable use case. So in this recipe, we're going to see how we can perform both anonymous and password authentication. You will need to initialize the Firebase plugin with the application. To do that, open your project, head to your app.js file, and add the following import: var firebase = require("nativescript-plugin- firebase"); This will import the Firebase NativeScript plugin. Next, add the following lines of code: firebase.init({}).then((instance) => { console.log("[*] Firebase was successfully initialised"); }, (error) => { console.log("[*] Huston we've an initialization error: " + error); }); The preceding code will go and initialize Firebase within our application. How to do it... Before we start, we need to create some UI elements. Your page will look similar to this one after you finish (Figure 2): Figure 2: Application login page. Now open your login page and add the following code snippets there: <Page xmlns="http://schemas.nativescript.org/tns.xsd" navigatingTo="onNavigatingTo" class="page"> <Page.actionBar> <ActionBar title="Firebase CookBook" icon="" class="action-bar"> </ActionBar> </Page.actionBar> <StackLayout> <Label text="Login Page" textWrap="true" style="font-weight: bold; font-size: 18px; text-align: center; padding:20"/> <TextField hint="Email" text="{{ user_email }}" /> <TextField hint="Password" text="{{ user_password }}" secure="true"/&gt;<Button text="LOGIN" tap="{{ passLogin }}" class="btn btn-primary btn-active" /> <Button text="Anonymous login" tap="{{ anonLogin }}" class="btn btn-success"/> </StackLayout> </Page> Save that. Let's now look at the variables and functions in our view-model file. For that, let's implement the passLogin and anonLogin functions. The first one will be our normal email and password authentication, and the second will be our anonymous login function. To make this implementation come alive, type the following code lines on your page: viewModel.anonLogin = () => { firebase.login({ type: firebase.LoginType.ANONYMOUS }).then((result) => { console.log("[*] Anonymous Auth Response:" + JSON.stringify(result)); },(errorMessage) => { console.log("[*] Anonymous Auth Error: "+errorMessage); }); } viewModel.passLogin = () => { let email = viewModel.user_email; let pass = viewModel.user_password; firebase.login({ type: firebase.LoginType.PASSWORD, passwordOptions: { email: email, password: pass } }).then((result) => { console.log("[*] Email/Pass Response : " + JSON.stringify(result)); }, (error) => { console.log("[*] Email/Pass Error : " + error); }); } Now, simply save your file and run it using the following command: ~> tns run android # for android ~> tns run ios # for ios How it works... Let's quickly understand what we've just done in the recipe: We've built the UI we needed as per the authentication type. If we want the email and password one, we will need the respective fields, whereas, for anonymous authentication, all we need is a button. Then, for both functions, we call the Firebase login button specifying the connection type for both cases. After finishing that part, it's up to you to define what is next and to retrieve that metadata from the API for your own needs later on. Authenticating using Google Sign-In Google Sign-In is one of the most popular integrated services in Firebase. It does not require any extra hustle, has the most functionality, and is popular among many apps. In this recipe, we're going to see how we can integrate Firebase Google Sign-In with our NativeScript project. You will need to initialize the Firebase plugin within the application. To do that, open your project, head to your app.js file, and add the following line: var firebase = require("nativescript-plugin- firebase"); This will import the Firebase NativeScript plugin. Next, add the following lines of code: firebase.init({}).then((instance) => { console.log("[*] Firebase was successfully initialised"); }, (error) => { console.log("[*] Huston we've an initialization error: " + error); }); The preceding code will go and initialize Firebase within our application. We will also need to install some dependencies. For that, underneath the NativeScript-plugin-firebase folder | platform | Android | include.gradle file, uncomment the following entry for Android: compile "com.google.android.gms:play-services- auth:$googlePlayServicesVersion" Now save and build your application using the following command: ~> tns build android Or uncomment this entry if you're building an iOS application: pod 'GoogleSignIn' Then, build your project using the following command: ~> tns build ios How to do it... First, you will need to create your button. So for this to happen, please go to your login-page.xml file and add the following button declaration: <Button text="Google Sign-in" tap="{{ googleLogin }}" class="btn" style="color:red"/> Now let's implement the googleLogin() function by using the following code snippet: viewModel.googleLogin = () => { firebase.login({ type: firebase.LoginType.GOOGLE, }).then((result) => { console.log("[*] Google Auth Response: " + JSON.</span>stringify(result)); },(errorMessage) => { console.log("[*] Google Auth Error: " + errorMessage); }); } To build and experience your new feature, use the following command: ~> tns run android # for android ~> tns run ios # for ios Now, once you click on the Google authentication button, you should have the following (Figure 3): Figure 3: Account picking after clicking on Google Login button. Don't forget to add your SHA-1 fingerprint code or the authentication process won't finish. How it works... Let's explain what just happened in the preceding code: We added the new button for the Google authentication. Within the tap event of this button, we gave it the googleLogin() function. Within  googleLogin(), we used the Firebase login button giving it firebase.LoginType.GOOGLE as type. Notice that, similar to normal Google authentication on a web platform, we can also give the hd or the hostedDomain option. We could also use the option of filtering the connection hosting we want by adding the following option under the login type: googleOptions: { hostedDomain: "<your-host-name>" } The hd option or the hostedDomain is simply what's after the @ sign in an email address. So, for example, in the email ID cookbook@packtpub.com the hosted domain is packtpub.com. For some apps, you might want to limit the email ID used by users when they connect to your application to just that host. This can be done by providing only the hostedDomain parameter in the code line pertaining to the storage of the email address. When you look at the actual way we're making these calls, you will see that it's due to the powerful NativeScript feature that lets us exploit native SDK. If you remember the Getting ready section of this recipe, we uncommented a section where we installed the native SDK for both Android and iOS. Besides the NativeScript firebase plugin, you can also exploit the Firebase Auth SDK, which will let you exploit all supported Firebase authentication methods. Adding dynamic behavior using Firebase Remote Config Remote Config is one of the hottest features of Firebase and lets us play with all the different application configurations without too much of a headache. By a headache, we mean the process of building, testing, and publishing, which usually takes a lot of our time, even if it's just to fix a small float number that might be wrong. So in this recipe, we're going to see how we can use Firebase Remote Config within our application. In case you didn't choose the functionality by default when you created your application, please head to your build.gradle and Podfile and uncomment the Firebase Remote Config line in both files or in the environment you're using with your application. How to do it... Actually, the integration part of your application is quite easy. The tricky part is when you want to toggle states or alter some configuration. So think upon that heavily, because it will affect how your application works and will also affect the way you change properties. Let's suppose that within this NativeScript application we want to have a mode called Ramadan mode. We want to create this mode for a special month where we wish to offer discounts, help our users with new promos, or even change our user interface to suit the spirit of it. So, let's see how we can do that: firebase.getRemoteConfig({ developerMode: true, cacheExpirationSeconds: 1, properties: [{ key: "ramadan_promo_enabled", default: false } }).then(function (result) { console.log("Remote Config: " + JSON.stringify( result.properties.ramadan_promo_enabled)); //TODO : Use the value to make changes. }); In the preceding code, and because we are still in development mode, we set that we want the developerMode to be activated. We also set the cacheExpirationSeconds to be one second. This is important because we don't want our settings to take a long time until they affect our application during the development phase. This will set the throttled mode to true, which will make the application fetch or look for new data every second to our Firebase remote configurations. We can set the default values of each and every item within our Firebase remote configuration. This value will be the starting point for fetching any new values that might be present over the Firebase project console. Now, let's see how we can wire that value from the project console. To do this, head to your Firebase project Console | Remote Config Section | ADD YOUR FIRST PARAMETER Button (Figure 4): Figure 4: Firebase Remote Config Parameter adding section. Next, you will get a modal where you will add your properties and their values. Make sure to add the exact same one that's in your code otherwise it won't work. The following screenshot shows the PARAMETERS tab of the console where you will add the properties (Figure 5): Figure 5: While adding the new parameter After adding them, click on the PUBLISH CHANGES button (Figure 6): Figure 6: Publishing the new created Parameter. With that, you're done. Exit your application and open it back up again. Watch how your console and your application fetches the new values. Then, it's up to you and your application to make the needed changes once the values are changed. How it works... Let's explain what just happened: We added back our dependencies from the build.gradle and Podfile so we can support the functionality we want to use. We've selected and added the code that will be responsible for giving the default values and for fetching the new changes. We have also activated the developer mode, which will help out in our development and staging phases. This mode will be disabled once we're in production. We've set the cache expiration time, which is essential while being in development so we can retrieve those values in a fast way. This too will be changed in production, by giving the cache more expiration time, because we don't want to jeopardize our application with high-throttled operations every second. We've added our support config in our Firebase Remote Config parameters, gave it the necessary value, and published it. This final step will control the way our application feels and looks like each new change. We learned how to integrate Firebase with NativeScript using various recipes. If you've enjoyed this article, do check out 'Firebase Cookbook' to change the way you develop and make your app a first class citizen of the cloud.
Read more
  • 0
  • 0
  • 12666

article-image-unity-arcore-application-android
Sugandha Lahoti
21 May 2018
11 min read
Save for later

Build an ARCore app with Unity from scratch

Sugandha Lahoti
21 May 2018
11 min read
In this tutorial, we will learn to install, build, and deploy Unity ARCore apps for Android. Unity is a leading cross-platform game engine that is exceptionally easy to use for building game and graphic applications quickly. Unity has developed something of a bad reputation in recent years due to its overuse in poor-quality games. It isn't because Unity can't produce high-quality games, it most certainly can. However, the ability to create games quickly often gets abused by developers seeking to release cheap games for profit. This article is an excerpt from the book, Learn ARCore - Fundamentals of Google ARCore, written by Micheal Lanham. The following is a summary of the topics we will cover in this article: Installing Unity and ARCore Building and deploying to Android Remote debugging Exploring the code Installing Unity and ARCore Installing the Unity editor is relatively straightforward. However, the version of Unity we will be using may still be in beta. Therefore, it is important that you pay special attention to the following instructions when installing Unity: Navigate a web browser to https://unity3d.com/unity/beta. At the time of writing, we will use the most recent beta version of Unity since ARCore is also still in beta preview. Be sure to note the version you are downloading and installing. This will help in the event you have issues working with ARCore. Click on the Download installer button. This will download UnityDownloadAssistant. Launch UnityDownloadAssistant. Click on Next and then agree to the Terms of Service. Click on Next again. Select the components, as shown: Install Unity in a folder that identifies the version, as follows: Click on Next to download and install Unity. This can take a while, so get up, move around, and grab a beverage. Click on the Finish button and ensure that Unity is set to launch automatically. Let Unity launch and leave the window open. We will get back to it shortly. Once Unity is installed, we want to download the ARCore SDK for Unity. This will be easy now that we have Git installed. Follow the given instructions to install the SDK: Open a shell or Command Prompt. Navigate to your Android folder. On Windows, use this: cd C:Android Type and execute the following: git clone https://github.com/google-ar/arcore-unity-sdk.git After the git command completes, you will see a new folder called arcore-unity-sdk. If this is your first time using Unity, you will need to go online to https://unity3d.com/ and create a Unity user account. The Unity editor will require that you log in on first use and from time to time. Now that we have Unity and ARCore installed, it's time to open the sample project by implementing the following steps: If you closed the Unity window, launch the Unity editor. The path on Windows will be C:Unity 2017.3.0b8EditorUnity.exe. Feel free to create a shortcut with the version number in order to make it easier to launch the specific Unity version later. Switch to the Unity project window and click on the Open button. Select the Android/arcore-unity-sdk folder. This is the folder we used the git command to install the SDK to earlier, as shown in the following dialog: Click on the Select Folder button. This will launch the editor and load the project. Open the Assets/GoogleARCore/HelloARExample/Scenes folder in the Project window, as shown in the following excerpt: Double-click on the HelloAR scene, as shown in the Project window and in the preceding screenshot. This will load our AR scene into Unity. At any point, if you see red console or error messages in the bottom status bar, this likely means you have a version conflict. You will likely need to install a different version of Unity. Now that we have Unity and ARCore installed, we will build the project and deploy the app to an Android device in the next section. Building and deploying to Android With most Unity development, we could just run our scene in the editor for testing. Unfortunately, when developing ARCore applications, we need to deploy the app to a device for testing. Fortunately, the project we are opening should already be configured for the most part. So, let's get started by following the steps in the next exercise: Open up the Unity editor to the sample ARCore project and open the HelloAR scene. If you left Unity open from the last exercise, just ignore this step. Connect your device via USB. From the menu, select File | Build Settings. Confirm that the settings match the following dialog: Confirm that the HelloAR scene is added to the build. If the scene is missing, click on the Add Open Scenes button to add it. Click on Build and Run. Be patient, first-time builds can take a while. After the app gets pushed to the device, feel free to test it, as you did with the Android version. Great! Now we have a Unity version of the sample ARCore project running. In the next section, we will look at remotely debugging our app. Remote debugging Having to connect a USB all the time to push an app is inconvenient. Not to mention that, if we wanted to do any debugging, we would need to maintain a physical USB connection to our development machine at all times. Fortunately, there is a way to connect our Android device via Wi-Fi to our development machine. Use the following steps to establish a Wi-Fi connection: Ensure that a device is connected via USB. Open Command Prompt or shell. On Windows, we will add C:Androidsdkplatform-tools to the path just for the prompt we are working on. It is recommended that you add this path to your environment variables. Google it if you are unsure of what this means. Enter the following commands: //WINDOWS ONLY path C:Androidsdkplatform-tools //FOR ALL adb devices adb tcpip 5555 If it worked, you will see restarting in TCP mode port: 5555. If you encounter an error, disconnect and reconnect the device. Disconnect your device. Locate the IP address of your device by doing as follows: Open your phone and go to Settings and then About phone. Tap on Status. Note down the IP address. Go back to your shell or Command Prompt and enter the following: adb connect [IP Address] Ensure that you use the IP Address you wrote down from your device. You should see connected to [IP Address]:5555. If you encounter a problem, just run through the steps again. Testing the connection Now that we have a remote connection to our device, we should test it to ensure that it works. Let's test our connection by doing the following: Open up Unity to the sample AR project. Expand the Canvas object in the Hierarchy window until you see the SearchingText object and select it, just as shown in the following excerpt: Hierarchy window showing the selected SearchingText object Direct your attention to the Inspector window, on the right-hand side by default. Scroll down in the window until you see the text "Searching for surfaces…". Modify the text to read "Searching for ARCore surfaces…", just as we did in the last chapter for Android. From the menu, select File | Build and Run. Open your device and test your app. Remotely debugging a running app Now, building and pushing an app to your device this way will take longer, but it is far more convenient. Next, let's look at how we can debug a running app remotely by performing the following steps: Go back to your shell or Command Prompt. Enter the following command: adb logcat You will see a stream of logs covering the screen, which is not something very useful. Enter Ctrl + C (command + C on Mac) to kill the process. Enter the following command: //ON WINDOWS C:Androidsdktoolsmonitor.bat //ON LINUX/MAC cd android-sdk/tools/ monitor This will open Android Device Monitor. You should see your device on the list to the left. Ensure that you select it. You will see the log output start streaming in the LogCat window. Drag the LogCat window so that it is a tab in the main window, as illustrated: Android Device Monitor showing the LogCat window Leave the Android Device Monitor window open and running. We will come back to it later. Now we can build, deploy, and debug remotely. This will give us plenty of flexibility later when we want to become more mobile. Of course, the remote connection we put in place with adb will also work with Android Studio. Yet, we still are not actually tracking any log output. We will output some log messages in the next section. Exploring the code Unlike Android, we were able to easily modify our Unity app right in the editor without writing code. In fact, given the right Unity extensions, you can make a working game in Unity without any code. However, for us, we want to get into the nitty-gritty details of ARCore, and that will require writing some code. Jump back to the Unity editor, and let's look at how we can modify some code by implementing the following exercise: From the Hierarchy window, select the ExampleController object. This will pull up the object in the Inspector window. Select the Gear icon beside Hello AR Controller (Script) and from the context menu, select Edit Script, as in the following excerpt: This will open your script editor and load the script, by default, MonoDevelop. Unity supports a number of Integrated Development Environments (IDEs) for writing C# scripts. Some popular options are Visual Studio 2015-2017 (Windows), VS Code (All), JetBrains Rider (Mac), and even Notepad++(All). Do yourself a favor and try one of the options listed for your OS.   Scroll down in the script until you see the following block of code: public void Update () { _QuitOnConnectionErrors(); After the _QuitOnConnectionErrors(); line of code, add the following code: Debug.Log("Unity Update Method"); Save the file and then go back to Unity. Unity will automatically recompile the file. If you made any errors, you will see red error messages in the status bar or console. From the menu, select File | Build and Run. As long as your device is still connected via TCP/IP, this will work. If your connection broke, just go back to the previous section and reset it. Run the app on the device. Direct your attention to Android Device Monitor and see whether you can spot those log messages. Unity Update method The Unity Update method is a special method that runs before/during a frame update or render. For your typical game running at 60 frames per second, this means that the Update method will be called 60 times per second as well, so you should be seeing lots of messages tagged as Unity. You can filter these messages by doing the following: Jump to the Android Device Monitor window. Click on the green plus button in the Saved Filters panel, as shown in the following excerpt: Adding a new tag filter Create a new filter by entering a Filter Name (use Unity) and by Log Tag (use Unity), as shown in the preceding screenshot. Click on OK to add the filter. Select the new Unity filter. You will now see a list of filtered messages specific to Unity platform when the app is running on the device. If you are not seeing any messages, check your connection and try to rebuild. Ensure that you saved your edited code file in MonoDevelop as well. Good job. We now have a working Unity set up with remote build and debug support. In this post,  we installed Unity and the ARCore SDK for Unity. We then took a slight diversion by setting up a remote build and debug connection to our device using TCP/IP over Wi-Fi. Next, we tested out our ability to modify the C# script in Unity by adding some debug log output. Finally, we tested our code changes using the Android Device Monitor tool to filter and track log messages from the Unity app deployed to the device. To know how to setup web development with JavaScript in ARCore and look through the various sample ARCore templates, check out the book Learn ARCore - Fundamentals of Google ARCore. Getting started with building an ARCore application for Android Unity plugins for augmented reality application development Types of Augmented Reality targets
Read more
  • 0
  • 0
  • 9274

article-image-how-to-build-weather-app-using-kotlin-for-javascript
Sugandha Lahoti
04 May 2018
19 min read
Save for later

How to build a weather app using Kotlin for JavaScript

Sugandha Lahoti
04 May 2018
19 min read
In this tutorial, we will be covering JavaScript from a browser perspective. We will create a single page web app that will show the weather forecast for seven days from the current date. The user will provide a ZIP code as input for which the weather will be displayed. We will display all the basic information about the weather on a given day. We believe in learning by doing practicals. Let's see the power of Kotlin from a browser perspective. [box type="shadow" align="" class="" width=""]This article is an excerpt from the book,  Kotlin Blueprints, written by Ashish Belagali, Hardik Trivedi, and Akshay Chordiya. This book is a practical guide to building industry-grade web, mobile, and desktop applications in Kotlin using frameworks such as Spring Boot and Node.js[/box] Conceptually, we will cover the following points while making a web app: Setting up a project to use Kotlin along with JavaScript Showing simple text using Kotlin code Interacting with Document Object Model (DOM) using Kotlin DSL and usage of kotlinx.html Creating your first Kotlin and JavaScript project Tighten your shoelaces! As a first step, we will do the setup and create a simple app that prints on a console and changes the background color of a page. Choosing an IDE From Microsoft Visual Studio, NetBeans to Eclipse and Code::Blocks, we have a series of great and powerful IDEs. Each of them has their own pros and cons. JetBrains is one of the giants that is famous for its cutting-edge software and IntelliJ IDEA Ultimate is considered among one of the most intelligent IDEs for Java. It supports Kotlin and JavaScript by default. There is no other hassle in setting up the environments. Just install it from https://www.jetbrains.com/idea and you are all set to create your first JavaScript project using Kotlin. Creating a project If you are all done with setting up an IDE, launch IntelliJ IDEA and select Create New Project. You will then have the following screen opened. Select Kotlin | Kotlin (JavaScript) options as shown in the following screenshot: Make sure you select Kotlin (JavaScript) as highlighted in the preceding screenshot. The next step is to provide your Project name and choose a destination for your project directory: Creating an HTML page No browser project is complete without an HTML page. Create an index.html page in the root directory of your project. And write the following lines in a <body> tag: <body> <script type="text/javascript" src="out/production/KotlinWeb/lib/kotlin.js"></script> <script type="text/javascript" src="out/production/KotlinWeb/KotlinWeb.js"></script> </body> Creating a Main.kt file After creating our index.html page. Let's create our first Kotlin file. Name it as Main.kt or provide any desired name. Create a file in the src folder and write the following function inside: fun main(args: Array<String>) { document.bgColor="FF0000" val message = "Kotlin Blueprints" println("Your first JS code using Kotlin") } Build the project, by selecting the Build | Build Project menu option. On expanding the project explorer on the left of your workspace you will have the following type of directory structure: Make sure you double-check that the <script> tags are added in the <body>. They should match the name with the files created inside out/production/KotlinBluePrintsJSDemo/. Running the project If you have followed all the steps simply execute your index.html file in any browser and you should see the following output on your console and a red colored page rendered on your DOM: Congratulations! You have executed your first Kotlin code on the browser. Since we have code written in Kotlin, source code needs to recompile every time we update the code. Simply reloading an HTML page will not work. So build your project from the Build | Build Project menu option. Developing a weather forecast web app It was fun writing Kotlin code for a browser and seeing it working, wasn't it? Now we should target bigger goals. Let's develop another app step by step. We will build a weather forecast app, where the user will enter a ZIP code and can see the weather details (seven-day forecast) for the provided region. We will use the OpenWeatherMap API to get the weather details. Please find more details at https://openweathermap.org/api. Before we move to the next step we should create a new project named KotlinBluePrintsJSDemo. Some quick steps to follow: Create a Kotlin+JavaScript project named KotlinBluePrintsJSDemo. Create an index.html page under the root directory. Create a Main.kt file inside the src directory. Add script tags to add two JavaScript files, kotlin.js and KotlinBluePrintsJSDemo.js. Build a project. We want to create an app that will look like this at the end. Entirely in Kotlin: Creating a UI with dummy data The very first thing we do is to create a dummy view and get a clear idea of how our HTML page will look. We will also use a bit of CSS to give basic styles to our <div> tags. Simple HTML approach Now we shall look at the index.html file that we created by writing the following code. It's boring plain HTML tags: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Kotlin BluePrints JS Demo</title> </head> <body> <link rel="stylesheet" type="text/css" href="css/main.css"> <div id="container"> <label>Enter zip code : <input id="zipCode" type="number"> </label> <button id="submitZipCode" type="button">Get Weather</button> <div class="weatherContainer"> <div class="weatherBlock"> <div>13 Oct, 2017</div> <img src="images/weather_img.png" height="40px" width="40px"> <div> <span>35</span> <span>20</span> </div> </div> <div class="weatherBlock"> <div>13 Oct, 2017</div> <img src="images/weather_img.png" height="40px" width="40px"> <div> <span>35</span> <span>20</span> </div> </div> <!-- Similarly you can have remaining divs here --> </div> </div> <script src="out/production/KotlinBluePrintsJSDemo/lib/kotlin.js"> </script> <script src="out/production/KotlinBluePrintsJSDemo /KotlinBluePrintsJSDemo.js"></script> </body> </html> Observe two tags, <script> and <link>. We haven't added CSS yet. Let's create a CSS folder under the root directory and create a main.css file inside. The main.css will contain the following code for now: .weatherContainer { width: 90%; background: #EEEEEE; margin: 10px auto; position: relative; text-align:center; } .weatherBlock { background: #FFFFFF; height: 100px; width: 100px; display:inline-block; margin: 10px; } In a source code, we have also created an images directory and put some weather images in it to make the UI more beautiful. Creating UI using Kotlin The index.html page contains all the HTML code. We need to now move that HTML code to Kotlin. Kotlin has the capability to manipulate the DOM element and it can also deal with the tree elements and their hierarchy. Simply put two <script> tags and a parent <div> tag in an HTML page and everything will go to a Kotlin page: <div id="container"> </div> Now, in Main.kt we will write the HTML code that we previously wrote inside index.html. Main.kt and it will look as follows: fun main(args: Array<String>) { createUserInput() } fun createUserInput() { val root = document.getElementById("container") root?.innerHTML = "<label>Enter zip code : <input id="zipCode" type="number"></label>" + "<button id="submitZipCode" type="button">Get Weather</button>" + "<div class="weatherContainer">" + "<div class="weatherBlock">" + "<div>13 Oct, 2017</div>" + "<img src="images/weather_img.png" height="40px" width="40px">"+ "<div>" + "<span>35</span>" + "<span>20</span>" + "</div>" + "</div>" + "<div class="weatherBlock">" + "<div>13 Oct, 2017</div>" + "<img src="images/weather_img.png" height="40px" width="40px">"+ "<div>" + "<span>35</span>" + "<span>20</span>" + "</div>" + "</div>" // Similarly add remaining divs } Take a note of the document object and its function getElementById. This is coming from the kotlin.browser.document package. Also org.w3c.dom as companion classes for all HTML elements. With object root, we get access to an innerHTML property and we can assign any valid HTML strings to it and it will get rendered. It is noteworthy that the nullability of root objects is handled with Null Safety operator ? of Kotlin. What is DSL? Now, the previous approach doesn't create much difference. Kotlin would want to do better! Let us introduce you to the beautiful concept of DSL. DSL stands for Domain Specific Language. As the name indicates, it gives you the feeling that you are writing code in a language, using terminology particular to a given domain, without being geeky, but then this terminology is cleverly embedded as a syntax in a powerful language. If you are from the Groovy community you must be aware of builders. Groovy builders allow defining data in a semi declarative way. It's a kind of mini-language of its own. Builders are considered good for generating XML and laying out UI components. Kotlin DSL uses Lambdas a lot. DSL in Kotlin are type-safe builders. It means we can detect compilation errors in IntelliJ's beautiful IDE. The type-check builders are much better than the dynamically-typed builders of Groovy. Using Kotlinx.html The DSL to build HTML trees is a pluggable dependency. We, therefore, need to set it up and configure it for our project. For now, we will keep things simple and add the dependency in them in the form of a .jar file. We will keep this .jar file in the lib folder, which will reside at the root level. The library is created by the JetBrains team only and it's open source. You can find it at https://github.com/Kotlin/kotlinx.html. You can simply visit the URL https://dl.bintray.com/kotlin/kotlinx.html/org/jetbrains/kotlinx/kotlinx-html-js/0.6.4/ and download the .jar file from there. For this demo app, we have used v 0.6.4. The .jar repository page can look as follows: To set up the kotlinx.html dependency in your app please follow these steps: In our app, we are using v 0.6.4. Make sure you download the JAR file named  kotlinx-html-js-0.6.4.jar. Please verify that you have kept the .jar file inside the lib directory. Also, do not forget to add the .jar file as a library. Right-click on the .jar file and select Add As Library…. Select classes as a category while adding them as a library. Or you can simply choose to add the dependency via Gradle, in that, you need to add the following things to your build.gradle file: repositories { jcenter() } dependencies { //Fill this in with the version of kotlinx in use in your project def kotlinx_html_version = "your_version_here" // include for client-side compile "org.jetbrains.kotlinx:kotlinx-html- js:${kotlinx_html_version}" } Refactoring the HTML code using DSL The DSL code to make a button with the title "Get Weather" looks as follows: button { +"Get Weather" type = ButtonType.button onClickFunction = { // Your code to handle button click goes here. } } Simple and clean code. Similarly, let's create a function that will display an entire div, which has a label, text input, and button: fun getInputDiv(): HTMLDivElement { val inputDiv = document.create.div { label { +"Enter zip code : " input { id = "zipCode" type = InputType.number value = 411021.toString() } } button { +"Get Weather" type = ButtonType.button onClickFunction = { // Your code to handle button click goes here } } } return inputDiv } Observe how we have provided ID, input types, and a default ZIP code value. A default ZIP code value is optional. Let's spend some time understanding the previous code. label, input, button, type, id, and onClickFunction are nothing but functions. They are basically Lambda functions. Some of the functions that use Lambda parameters and call variations can be as follows: someFunction({}) someFunction("KotlinBluePrints",1,{}) someFunction("KotlinBluePrints",1){} someFunction{} Let's run the code. You may get an error on the console saying: Error Uncaught Error: Error loading module 'KotlinBluePrintsJSDemo'. Its dependency 'kotlinx-html-js' was not found. Please, check whether 'kotlinx-html-js' is loaded prior to 'KotlinBluePrintsJSDemo'. This is because kotlinx-html-js is missing, which is required to process the DSL generated code. You can see the kotlinx-html-js file generated under the out/production/KotlinBluePrintsJSDemo/lib path. Calling a weather API Now it's time to get the weather data and display it on the page. We will use XMLHttpRequest to achieve this. Register yourself at http://openweathermap.org/appid and get your application ID. Your application ID will be appended to the actual URL to make the authenticated call to the weather API. Once you get the app ID let's keep that information in the Constants.kt file: const val IMAGE_URL = "http://openweathermap.org/img/w/%s.png" const val BASE_URL = "https://api.openweathermap.org/data/2.5/forecast/daily? mode=json&units=metric&cnt=7" const val APP_ID = "Your open weather map application id" const val FULL_URL = "$BASE_URL&appid=$APP_ID&q=" The Constants.kt file is not as simple as it looks. Check how we have stored different values. We have used const val, which is equivalent to const and static used combined. Also defining FULL_URL uses the concept of string interpolation. String interpolation is used to concatenate static strings along with string objects. You can also call functions in string interpolation as follows: h4 { +"Weather info for ${forecastResult.city.name}, (${forecastResult.city.country})" } Now, in onClickFunction we write the following code to perform the API call and on the successful response we call a showData function, which takes a forecastResult object: onClickFunction = { val zipCode = document.getElementById("zipCode") as HTMLInputElement val xmlHttpRequest = XMLHttpRequest() xmlHttpRequest.open("GET", FULL_URL + zipCode.value, false) xmlHttpRequest.send() println(xmlHttpRequest.responseText) val forecastResult = JSON.parse<ForecastResult> (xmlHttpRequest.responseText) showData(forecastResult) } Reading data from input elements See how we read data from input elements: document.getElementById("zipCode") as HTMLInputElement The as HTMLInputElement construct is basically casting a result into the HTMLInputElement class. Using as directly is not advisable because it can give you ClassCastException; a proper way to use it is as? HTMLInputElement. This returns null if the class cast fails. And Kotlin will force you to use a Null Safety operator from that very moment. Data classes We are maintaining ForecastResult, which is our model. For this purpose, we have data classes in Kotlin. One of the coolest features in Kotlin is data classes. All the pain that we used to endure to create and maintain POJO classes in Java is gone. No need to have those dedicated packages to hold your model class. Any Kotlin file can hold your data class. By default it provides you methods such as toString(), equals(), copy(), and hashCode() method implementation. In Android, we mostly use these types of classes to hold our JSON responses in the form of model classes. You can check out the data classes we created in ServerResponses.kt: data class ForecastResult(val city: City, val list: Array<Forecast>) data class City(val id: Long, val name: String, val coord: Coordinates, val country: String, val population: Int) data class Coordinates(val lon: Float, val lat: Float) data class Forecast(val dt: Long, val temp: Temperature, val pressure: Float, val humidity: Int, val weather: Array<Weather>, val speed: Float, val deg: Int, val clouds: Int) data class Temperature(val day: Float, val min: Float, val max: Float, val night: Float, val eve: Float, val morn: Float) data class Weather(val id: Long, val main: String, val description: String, val icon: String) Some of the points to consider while using data classes are: The primary constructor needs to have at least one parameter All primary constructor parameters need to be marked as val or var Data classes cannot be abstract, open, sealed, or inner (Before version 1.1) data classes may only implement interfaces Showing data to the user Now comes the interesting part. We gate a ForecastResult object, which holds all the records. The list object holds records for seven days. Let's create a showData function that takes a ForecastResult object and display title text in <h4>.  The code will look like the following snippet. Also, it has yet again one more example of string interpolation: fun showData(forecastResult: ForecastResult) { val root = document.getElementById("container") root?.appendChild(document.create.div(classes = "currentTemp") { h4 { +"Weather info for ${forecastResult.city.name (${forecastResult.city.country})" } }) } This is simple now, quickly create a showForecast function that will be called from showData and will display the weather forecast for seven days. The showForecast is used with a function from Kotlin.  thewith() is one of those functions that is liked by the developer community a lot; it makes use of Kotlin sweeter. The with() function accepts the receiver and the code written inside the function automatically applies to the receiver object. It's an inline function. Check out the following document: /** * Calls the specified function [block] with the given [receiver] as its receiver and returns its result. */ public inline fun <T, R> with(receiver: T, block: T.() -> R): R = receiver.block() In the code, observe how each iteration is using a with block. We have removed some of the lines from the original code, so that we can have the clean code snippet here: forecastResult.list.forEachIndexed { index, forecast -> with(forecast) { weatherContainer.appendChild(document.create.div(classes = "weatherBlock") { div { p(classes = "currentTemp") { +"${Math.round(temp.day)} °C" } } img(classes = "weatherImage") { src = "images/weather_img.png" } div { span(classes = "secondaryText") { +weather[0].main } } div { with(temp) { span(classes = "primaryText") { +"${Math.round(max)} °C" } span(classes = "secondaryText") { +" /${Math.round(min)} °C" } } } onClickFunction = { showDetailedForecast(forecastResult.city, forecast) } }) } } DSL and Kotlin code are now beautifully gelled. Also, notice the onClickFunction that we wrote on div.  Sweet, isn't it? Showing weather details A very small part of the app is left now. Let's show some more details to the user. Along with this, we will also learn a few more features of Kotlin. We have created a showDetailedForecast function that takes the City and Forecast objects as parameters. The following code snippets provide two things to learn: fun showDetailedForecast(city: City, forecast: Forecast) { val root = document.getElementById("container") val weatherDetailDiv = document.create.div(classes = "detailsContainer") val basicDetailDiv = document.create.div { p(classes = "secondaryText") { +"${city.name}, ${city.country} (${city.coord.lat},${city.coord.lon})" } p(classes = "secondaryText") { +forecast.dt.getFullDate() } p(classes = "secondaryText") { +"${forecast.weather[0].main}, ${forecast.weather[0].description}" } } val otherDetailsDiv = document.create.div { div { id = "leftDiv" span(classes = "currentTemp") { +"${Math.round(forecast.temp.day)} °C" } img { src = "images/weather_img.png" width = 90.toString() height = 90.toString() } } div { id = "rightDiv" p(classes = "secondaryText") { +"Pressure: ${forecast.pressure} mb" } p(classes = "secondaryText") { +"Humidity: ${forecast.humidity} %" } p(classes = "secondaryText") { +"Wind: ${forecast.speed} mph" } p(classes = "secondaryText") { +"Cloudiness: ${forecast.clouds} %" } } div(classes = "clearBoth") } weatherDetailDiv.appendChild(basicDetailDiv) weatherDetailDiv.appendChild(otherDetailsDiv) root?.appendChild(weatherDetailDiv) } Named parameters In Kotlin, we can call/bind a parameter with their name for any function. We can call the preceding function by interchanging the parameter sequence as well. Something like the following: showDetailedForecast(forecast = forecast, city = forecastResult.city) Observe that we swapped the place of the variable. And no wonder, all CSS classes that we have applied so far have a named parameter. Check all previous <div>, <h>, and <p> tags. Consider the following examples: val weatherDetailDiv = document.create.div(classes = "detailsContainer") button(classes = "getWeatherButton") span(classes = "primaryText") { +"${Math.round(max)} °C" } Extension functions Extension functions are a beautiful feature of Kotlin. Extension functions allow us to add the functions in the native class sets. All extension functions are statically resolved. Check out DateExtension.kt, it has three extension functions written for Long objects. They return different date formats. The code inside it may look a bit strange, which we will discuss in the following section: fun Long.getShortDate(): String { val getFormattedDate: dynamic = js("window.getShortDate") return getFormattedDate(this) } fun Long.getFullDate(): String { val getFormattedDate: dynamic = js("window.getFullDate") return getFormattedDate(this) } fun Long.getFullWeekDay(): String { val getFormattedDate: dynamic = js("window.getFullWeekDay") return getFormattedDate(this) } We don't need to write utility methods in Kotlin. We should prefer extension functions over Utils. Do not try to have any heavy methods as extension functions, instance functions are always good. Writing extension functions to format dates and to have some validation functions is OK. But it's not good to write an API calling function for any string class. Remember they are statically resolved. A project loaded with static is not good for memory. Giving final touches We wrote many lines of code so far. We also refactored them periodically. Once again it's a time to refactor and look for the possible improvements. Let's take a look back and see if there is any possibility of refactoring the code further. Adding CSS Let's add some custom font and style some of the missed HTML elements. We have used Robot font, you can use any font of your desire. It's a simple one-liner code to mention the font in the app. Add the following line to your index.html page just after the <body> tag: <link href="https://fonts.googleapis.com/css? family=Roboto+Condensed" rel="stylesheet"> And in main.css apply the font to an entire HTML page: html * { font-family: 'Roboto Condensed', sans-serif; } Reload the page. Looks beautiful now, doesn't it? To summarize, we learned various elements of Kotlin such as setting up Kotlin for JavaScript projects, interacting with DOM elements, DSL, and so on. The purpose of this article was to show that Kotlin's support for JavaScript is no more an experiment. It's already production ready. You can see what can be done using the benefits of statically typed programming languages and powerful JavaScript ecosystems. To know more about how to use Kotlin code for writing a Node.js application, you may refer to this book Kotlin Blueprints. Build your first Android app with Kotlin How to convert Java code into Kotlin 5 application development tools that will matter in 2018  
Read more
  • 0
  • 0
  • 7687
Banner background image

article-image-how-android-app-developers-can-convert-iphone-apps
Michael Kordvani
02 May 2018
5 min read
Save for later

How Android app developers can convert iPhone apps

Michael Kordvani
02 May 2018
5 min read
Businesses like to cast their nets as wide as possible in search of new customers. This type of broad outreach requires designing mobile apps for both iOS and Android phones. Although iPhones are very popular in the U.S. market, if you want to step up and attract global customers, you need to expand your product to the Android platform. Most Android app developers will face this challenge at some point: how to create an Android app from an iPhone app, and make it at least as successful as the primary product. It's not surprising that developers tend to concentrate on building up their skills for one platform in particular. Both platforms have their challenges. Spreading yourself too thin in an effort to meet the requirements for both phones can mean that the user experience suffers. But the challenges can be overcome. iPhone apps are great, but limited in terms of market size. Android apps are the biggest market players, and companies often ask the same team of Android app developers to take on both projects at once. With a few tips and tricks to help you along, you’ll be able to make your project a success. What are the benefits of redesigning an iPhone App into an Android App? Before converting your iPhone app into an Android app, it’s important to keep in mind that enlarging the customer base is not the only benefit. You will also get the chance to add more features, diversify money-making methods with new options for in-app purchasing and advertisements, as well as get a full product overhaul at only a fraction of the cost of starting from scratch. These are the obvious reasons why companies usually don’t overlook the possibility of iPhone app conversion. When a company has a team of iPhone and Android app developers and can save on new projects, it often pays off handsomely in the end. Hiring a product manager to oversee the process is not a bad idea if you have the budget for it. A manager can help the team understand the similar elements of these otherwise different platforms. Despite the UX/UI design differences in terms of navigation, icons and app architecture, you still need to code with customer requirements in mind. Also, before you start redesigning the product, keep in mind that the business model may need to be tweaked and the store submission process is quite different. UX and UI design differences between Android and iOS The platforms have significant differences in terms of design. You cannot simply copy the elements from an iPhone to an Android phone environment, at least not in a clear-cut way. You must design with the already-set styles in mind. For example, Android apps use a specific icon library, which is different from the one used for iOS. Android app developers and designers work with a wider color palette, varying in nuances and shades, while iPhone apps are more standardized. Roboto is the preferred Android font, and San Francisco is its iPhone counterpart. The hierarchical typography is not the same either. Because of the variations in the navigation tools, the user interface looks very different on Android phones. iPhone navigation is concentrated at the bottom; Android phones use more side and top navigation bars. Don’t forget about the thumb issue. iPhones are generally built around an average-sized thumb. With Android, you have a bit more leeway to accommodate all thumb sizes. Even if you focus only on these design basics, the user interface on an iPhone will still look different than the one on an Android smartphone. If we factor in button styles (flat on iOS vs. flat/floating on Android), grids and action sheets, as well as dropdown menus, things get even more complex. This guide offers a helpful comparison overview you can use when converting iPhone apps into Android apps. Sizing and resolution on Android phones also present their own challenges. Designers need to include different Android screen resolutions, which is already significantly more challenging than designing for the unified iPhone layout. iPhone app developers use points, and Android app developers use pixels when measuring screen objects, such as fonts and icons. The pt/px ratio is 0.75. At the same time, clients need some degree of standardization for brand recognition. They don’t want to confuse users with two apps that don’t appear to be from the same company. Further considerations Android app developers need to make about code and external libraries It can be challenging to find a team of Android app developers who also know how to code in iOS-friendly languages. However, it may be more efficient and cost-effective than working with two different teams. Programming languages that work for both Android apps and iOS apps are Kotlin and C-languages. Nonetheless, both platforms have widely preferred languages: Swift for iPhone apps and Java for Android apps. Android app developers should also check for compatibility before using external libraries and tools in the conversion project. Although challenging, converting iPhone apps for the Android OS platform is far from impossible. After all, people do it every day, as dual-platform apps are the rule rather than the exception. All you need to do to make a great product is to understand the key differences and make the necessary adjustments. Build your first Android app with Kotlin How to Secure and Deploy an Android App Why are Android developers switching from Java to Kotlin?
Read more
  • 0
  • 0
  • 4061

article-image-building-arcore-android-application
Sugandha Lahoti
24 Apr 2018
9 min read
Save for later

Getting started with building an ARCore application for Android

Sugandha Lahoti
24 Apr 2018
9 min read
Google developed ARCore to be accessible from multiple development platforms (Android [Java], Web [JavaScript], Unreal [C++], and Unity [C#]), thus giving developers plenty of flexibility and options to build applications on various platforms. While each platform has its strengths and weaknesses, all the platforms essentially extend from the native Android SDK that was originally built as Tango. This means that regardless of your choice of platform, you will need to install and be somewhat comfortable working with the Android development tools. In this article, we will focus on setting up the Android development tools and building an ARCore application for Android. The following is a summary of the major topics we will cover in this post: Installing Android Studio Installing ARCore Build and deploy Exploring the code Installing Android Studio Android Studio is a development environment for coding and deploying Android applications. As such, it contains the core set of tools we will need for building and deploying our applications to an Android device. After all, ARCore needs to be installed to a physical device in order to test. Follow the given instructions to install Android Studio for your development environment: Open a browser on your development computer to https://developer.android.com/studio. Click on the green DOWNLOAD ANDROID STUDIO button. Agree to the Terms and Conditions and follow the instructions to download. After the file has finished downloading, run the installer for your system. Follow the instructions on the installation dialog to proceed. If you are installing on Windows, ensure that you set a memorable installation path that you can easily find later, as shown in the following example: Click through the remaining dialogs to complete the installation. When the installation is complete, you will have the option to launch the program. Ensure that the option to launch Android Studio is selected and click on Finish. Android Studio comes embedded with OpenJDK. This means we can omit the steps to installing Java, on Windows at least. If you are doing any serious Android development, again on Windows, then you should go through the steps on your own to install the full Java JDK 1.7 and/or 1.8, especially if you plan to work with older versions of Android. On Windows, we will install everything to C:Android; that way, we can have all the Android tools in one place. If you are using another OS, use a similar well-known path. Now that we have Android Studio installed, we are not quite done. We still need to install the SDK tools that will be essential for building and deployment. Follow the instructions in the next exercise to complete the installation: If you have not installed the Android SDK before, you will be prompted to install the SDK when Android Studio first launches, as shown: Select the SDK components and ensure that you set the installation path to a well-known location, again, as shown in the preceding screenshot. Leave the Welcome to Android Studio dialog open for now. We will come back to it in a later exercise. That completes the installation of Android Studio. In the next section, we will get into installing ARCore. Installing ARCore Of course, in order to work with or build any ARCore applications, we will need to install the SDK for our chosen platform. Follow the given instructions to install the ARCore SDK: We will use Git to pull down the code we need directly from the source. You can learn more about Git and how to install it on your platform at https://git-scm.com/book/en/v2/Getting-Started-Installing-Git or use Google to search: getting started installing Git. Ensure that when you install on Windows, you select the defaults and let the installer set the PATH environment variables. Open Command Prompt or Windows shell and navigate to the Android (C:Android on Windows) installation folder. Enter the following command: git clone https://github.com/google-ar/arcore-android-sdk.git This will download and install the ARCore SDK into a new folder called arcore-android-sdk, as illustrated in the following screenshot: Ensure that you leave the command window open. We will be using it again later. Installing the ARCore service on a device Now, with the ARCore SDK installed on our development environment, we can proceed with installing the ARCore service on our test device. Use the following steps to install the ARCore service on your device: NOTE: this step is only required when working with the Preview SDK of ARCore. When Google ARCore 1.0 is released you will not need to perform this step. Grab your mobile device and enable the developer and debugging options by doing the following: Opening the Settings app Selecting the System Scrolling to the bottom and selecting About phone Scrolling again to the bottom and tapping on Build number seven times Going back to the previous screen and selecting Developer options near the bottom Selecting USB debugging Download the ARCore service APK from https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk to the Android installation folder (C:Android). Also note that this URL will likely change in the future. Connect your mobile device with a USB cable. If this is your first time connecting, you may have to wait several minutes for drivers to install. You will then be prompted to switch on the device to allow the connection. Select Allow to enable the connection. Go back to your Command Prompt or Windows shell and run the following command: adb install -r -d arcore-preview.apk //ON WINDOWS USE: sdkplatform-toolsadb install -r -d arcore-preview.apk After the command is run, you will see the word Success. This completes the installation of ARCore for the Android platform. In the next section, we will build our first sample ARCore application. Build and deploy Now that we have all the tedious installation stuff out of the way, it's time to build and deploy a sample app to your Android device. Let's begin by jumping back to Android Studio and following the given steps: Select the Open an existing Android Studio project option from the Welcome to Android Studio window. If you accidentally closed Android Studio, just launch it again. Navigate and select the Androidarcore-android-sdksamplesjava_arcore_hello_ar folder, as follows: Click on OK. If this is your first time running this project, you will encounter some dependency errors, such as the one here: In order to resolve the errors, just click on the link at the bottom of the error message. This will open a dialog, and you will be prompted to accept and then download the required dependencies. Keep clicking on the links until you see no more errors. Ensure that your mobile device is connected and then, from the menu, choose Run - Run. This should start the app on your device, but you may still need to resolve some dependency errors. Just remember to click on the links to resolve the errors. This will open a small dialog. Select the app option. If you do not see the app option, select Build - Make Project from the menu. Again, resolve any dependency errors by clicking on the links. "Your patience will be rewarded." - Alton Brown Select your device from the next dialog and click on OK. This will launch the app on your device. Ensure that you allow the app to access the device's camera. The following is a screenshot showing the app in action: Great, we have built and deployed our first Android ARCore app together. In the next section, we will take a quick look at the Java source code. Exploring the code Now, let's take a closer look at the main pieces of the app by digging into the source code. Follow the given steps to open the app's code in Android Studio: From the Project window, find and double-click on the HelloArActivity, as shown: After the source is loaded, scroll through the code to the following section: private void showLoadingMessage() { runOnUiThread(new Runnable() { @Override public void run() { mLoadingMessageSnackbar = Snackbar.make( HelloArActivity.this.findViewById(android.R.id.content), "Searching for surfaces...", Snackbar.LENGTH_INDEFINITE); mLoadingMessageSnackbar.getView().setBackgroundColor(0xbf323232); mLoadingMessageSnackbar.show(); } }); } Note the highlighted text—"Searching for surfaces..". Select this text and change it to "Searching for ARCore surfaces..". The showLoadingMessage function is a helper for displaying the loading message. Internally, this function calls runOnUIThread, which in turn creates a new instance of Runnable and then adds an internal run function. We do this to avoid thread blocking on the UI, a major no-no. Inside the run function is where the messaging is set and the message Snackbar is displayed. From the menu, select Run - Run 'app' to start the app on your device. Of course, ensure that your device is connected by USB. Run the app on your device and confirm that the message has changed. Great, now we have a working app with some of our own code. This certainly isn't a leap, but it's helpful to walk before we run. In this article, we started exploring ARCore by building and deploying an AR app for the Android platform. We did this by first installing Android Studio. Then, we installed the ARCore SDK and ARCore service onto our test mobile device. Next, we loaded up the sample ARCore app and patiently installed the various required build and deploy dependencies. After a successful build, we deployed the app to our device and tested. Finally, we tested making a minor code change and then deployed another version of the app. You read an excerpt from the book, Learn ARCore - Fundamentals of Google ARCore, written by Micheal Lanham. This book will help you will create next-generation Augmented Reality and Mixed Reality apps with the latest version of Google ARCore. Read More Google ARCore is pushing immersive computing forward Types of Augmented Reality targets
Read more
  • 0
  • 0
  • 8185

article-image-how-to-secure-and-deploy-an-android-app
Sugandha Lahoti
20 Apr 2018
17 min read
Save for later

How to Secure and Deploy an Android App

Sugandha Lahoti
20 Apr 2018
17 min read
In this article, we will be covering two extremely important Android-related topics: Android application security Android application deployment We will kick off the post by discussing Android application security. Securing an Android application It should come as no surprise that security is an important consideration when building software. Besides the security measures put in place in the Android operating system, it is important that developers pay extra attention to ensure that their applications meet the set security standards. In this section, a number of important security considerations and best practices will be broken down for your understanding. Following these best practices will make your applications less vulnerable to malicious programs that may be installed on a client device. Data storage All things being equal, the privacy of data saved by an application to a device is the most common security concern in developing an Android application. Some simple rules can be followed to make your application data more secure. Securing your data when using internal storage As we saw in the previous chapter, internal storage is a good way to save private data on a device. Every Android application has a corresponding internal storage directory in which private files can be created and written to. These files are private to the creating application, and as such cannot be accessed by other applications on the client device. As a rule of thumb, if data should only be accessible by your application and it is possible to store it in internal storage, do so. Feel free to refer to the previous chapter for a refresher on how to use internal storage. Securing your data when using external storage External storage files are not private to applications, and, as such, can be easily accessed by other applications on the same client device. As a result of this, you should consider encrypting application data before storing it in external storage. There are a number of libraries and packages that can be used to encrypt data prior to its saving to external storage. Facebook's Conceal (http://facebook.github.io/conceal/) library is a good option for external-storage data encryption. In addition to this, as another rule of thumb, do not store sensitive data in external storage. This is because external storage files can be manipulated freely. Validation should also be performed on input retrieved from external storage. This validation should be done as a result of the untrustworthy nature of data stored in external storage. Securing your data when using internal storage. Content providers can either prevent or enable external access to your application data. Use the android:exported attribute when registering your content provider in the manifest file to specify whether external access to the content provider should be permitted. Set android:exported to true if you wish the content provider to be exported, otherwise set the attribute to false. In addition to this, content provider query methods—for example, query(), update(), and delete()—should be used to prevent SQL injection (a code injection technique that involves the execution of malicious SQL statements in an entry field by an attacker). Networking security Best practices for your Android App development There are a number of best practices that should be followed when performing network transactions via an Android application. These best practices can be split into different categories. We shall speak about Internet Protocol (IP) networking and telephony networking best practices in this section. IP networking When communicating with a remote computer via IP, it is important to ensure that your application makes use of HTTPs wherever possible (thus wherever it is supported in the server). One major reason for doing this is because devices often connect to insecure networks, such as public wireless connections. HTTPs ensure encrypted communication between clients and servers, regardless of the network they are connected to. In Java, an HttpsURLConnection can be used for secure data transfer over a network. It is important to note that data received via an insecure network connection should not be trusted. Telephony networking In instances where data needs to be transferred freely across a server and client applications, Firebase Cloud Messaging (FCM)—along with IP networking—should be utilized instead of other means, such as the Short Messaging Service (SMS) protocol. FCM is a multi-platform messaging solution that facilitates the seamless and reliable transfer of messages between applications. SMS is not a good candidate for transferring data messages, because: It is not encrypted It is not strongly authenticated Messages sent via SMS are subject to spoofing SMS messages are subject to interception Input validation The validation of user input is extremely important in order to avoid security risks that may arise. One such risk, as explained in the Using content providers section, is SQL injection. The malicious injection of SQL script can be prevented by the use of parameterized queries and the extensive sanitation of inputs used in raw SQL queries. In addition to this, inputs retrieved from external storage must be appropriately validated because external storage is not a trusted data source. Working with user credentials The risk of phishing can be alleviated by reducing the requirement of user credential input in an application. Instead of constantly requesting user credentials, consider using an authorization token. Eliminate the need for storing usernames and passwords on the device. Instead, make use of a refreshable authorization token. Code obfuscation Before publishing an Android application, it is imperative to utilize a code obfuscation tool, such as ProGuard, to prevent individuals from getting unhindered access to your source code by utilizing various means, such as decompilation. ProGuard is prepackaged included within the Android SDK, and, as such, no dependency inclusion is required. It is automatically included in the build process if you specify your build type to be a release. You can find out more about ProGuard here: https://www.guardsquare.com/en/proguard . Securing broadcast receivers By default, a broadcast receiver component is exported and as a result can be invoked by other applications on the same device. You can control access of applications to your apps's broadcast receiver by applying security permissions to it. Permissions can be set for broadcast receivers in an application's manifest file with the <receiver> element. Securing your Dynamically loading code In scenarios in which the dynamic loading of code by your application is necessary, you must ensure that the code being loaded comes from a trusted source. In addition to this, you must make sure to reduce the risk of tampering code at all costs. Loading and executing code that has been tampered with is a huge security threat. When code is being loaded from a remote server, ensure it is transferred over a secure, encrypted network. Keep in mind that code that is dynamically loaded runs with the same security permissions as your application (the permissions you defined in your application's manifest file). Securing services Unlike broadcast receivers, services are not exported by the Android system by default. The default exportation of a service only happens when an intent filter is added to the declaration of a service in the manifest file. The android:exported attribute should be used to ensure services are exported only when you want them to be. Set android:exported to true when you want a service to be exported and false otherwise. Deploying your Android Application So far, we have taken an in-depth look at the Android system, application development in Android, and some other important topics, such as Android application security. It is time for us to cover our final topic for this article pertaining to the Android ecosystem—launching and publishing an Android application. You may be wondering at this juncture what the words launch and publish mean. A launch is an activity that involves the introduction of a new product to the public (end users). Publishing an Android application is simply the act of making an Android application available to users. Various activities and processes must be carried out to ensure the successful launch of an Android application. There are 15 of these activities in all. They are: Understanding the Android developer program policies Preparing your Android developer account Localization planning Planning for simultaneous release Testing against the quality guideline Building a release-ready APK Planning your application's Play Store listing Uploading your application package to the alpha or beta channel Device compatibility definition Pre-launch report assessment Pricing and application distribution setup Distribution option selection In-app products and subscriptions setup Determining your application's content rating Publishing your application Wow! That's a long list. Don't fret if you don't understand everything on the list. Let's look at each item in more detail. Understanding the Android developer program policies There is a set of developer program policies that were created for the sole purpose of making sure that the Play Store remains a trusted source of software for its users. Consequences exist for the violation of these defined policies. As a result, it is important that you peruse and fully understand these developer policies—their purposes and consequences—before continuing with the process of launching your application. Preparing your Android developer account You will need an Android developer account to launch your application on the Play Store. Ensure that you set one up by signing up for a developer account and confirming the accuracy of your account details. If you ever need to sell products on an Android application of yours, you will need to set up a merchant account. Localization planning Sometimes, for the purpose of localization, you may have more than one copy of your application, with each localized to a different language. When this is the case, you will need to plan for localization early on and follow the recommended localization checklist for Android developers. You can view this checklist here: https://developer.android.com/distribute/best-practices/launch/localization-checklist.html. Planning for simultaneous release You may want to launch a product on multiple platforms. This has a number of advantages, such as increasing the potential market size of your product, reducing the barrier of access to your product, and maximizing the number of potential installations of your application. Releasing on numerous platforms simultaneously is generally a good idea. If you wish to do this with any product of yours, ensure you plan for this well in advance. In cases where it is not possible to launch an application on multiple platforms at once, ensure you provide a means by which interested potential users can submit their contact details so as to ensure that you can get in touch with them once your product is available on their platform of choice. Testing against the quality guidelines Quality guidelines provide testing templates that you can use to confirm that your application meets the fundamental functional and non-functional requirements that are expected by Android users. Ensure that you run your applications through these quality guides before launch. You can access these application quality guides here: https://developer.android.com/develop/quality-guidelines/index.html. Building a release-ready application package (APK) A release-ready APK is an Android application that has been packaged with optimizations and then built and signed with a release key. Building a release-ready APK is an important step in the launch of an Android application. Pay extra attention to this step. Planning your application's Play Store listing This step involves the collation of all resources necessary for your product's Play Store listing. These resources include, but are not limited to, your application's log, screenshots, descriptions, promotional graphics, and videos, if any. Ensure you include a link to your application's privacy policy along with your application's Play Store listing. It is also important to localize your application's product listing to all languages that your application supports. Uploading your application package to the alpha or beta channel As testing is an efficient and battle-tested way of detecting defects in software and improving software quality, it is a good idea to upload your application package to alpha and beta channels to facilitate carrying out alpha and beta software testing on your product. Alpha testing and beta testing are both types of acceptance testing. Device compatibility definition This step involves the declaration of Android versions and screen sizes that your application was developed to work on. It is important to be as accurate as possible in this step as defining inaccurate Android versions and screen sizes will invariably lead to users experiencing problems with your application. Pre-launch report assessment Pre-launch reports are used to identify issues found after the automatic testing of your application on various Android devices. Pre-launch reports will be delivered to you, if you opt in to them, when you upload an application package to an alpha or beta channel. Pricing and application distribution setup First, determine the means by which you want to monetize you application. After determining this, set up your application as either a free install or a paid download. After you have set up the desired pricing of your application, select the countries you wish to distribute you applications to. Distribution option selection This step involves the selection of devices and platforms—for example, Android TV and Android Wear—that you wish to distribute your app on. After doing this, the Google Play team will be able to review your application. If your application is approved after its review, Google Play will make it more discoverable. In-app products and subscriptions setup If you wish to sell products within your application, you will need to set up your in-app products and subscriptions. Here, you will specify the countries that you can sell into and take care of various monetary-related issues, such as tax considerations. In this step, you will also set up your merchant account. Determining your application's content rating It is necessary that you provide an accurate rating for the application you are publishing to the Play Store. This step is mandated by the Android Developer Program Policies for good reason. It aids the appropriate age group you are targeting to discover your application. Publishing your application Once you have catered for the necessary steps prior to this, you are ready to publish your application to the production channel of the Play Store. Firstly, you will need to roll out a release. A release allows you to upload the APK files of your application and roll out your application to a specific track. At the end of the release procedure, you can publish your application by clicking Confirm rollout. So, that was all we need to know to publish a new application on the Play Store. In most cases, you will not need to follow all these steps in a linear manner, you will just need to follow a subset of the steps—more specifically, those pertaining to the type of application you wish to publish. Releasing your Android app Having signed your  application, you can proceed with completing the required application details toward the goal of releasing your app. Firstly, you need to create a suitable store listing for the application. Open the application  in the Google Play Console and navigate to the store-listing page (this can be done by selecting Store Listing on the side navigation bar). You will need to fill out all the required information in the store listing page before we proceed further. This information includes product details, such as a title, short description, full description, as well as graphic assets and categorization information—including the application type, category and content rating, contact details, and privacy policy. The Google Play Console store listing page is shown in the following screenshot: Once the store listing information has been filled in, the next thing to fill in is the pricing and distribution information. Select Pricing & distribution on the left navigation bar to open up its preference selection page. For the sake of this demonstration, we set the pricing of this app to FREE. We also selected five random countries to distribute this application to. These countries are Nigeria, India, the United States of America, the United Kingdom, and Australia: Besides selecting the type of pricing and the available countries for product distribution, you will need to provide additional preference information. The necessary information to be provided includes device category information, user program information, and consent information. It is now time to add our signed APK to our Google Play Console app. Navigate to App releases | MANAGE BETA | EDIT RELEASE. In the page that is presented to you, you may be asked whether you want to opt into Google play app signing: For the sake of this example, select OPT-OUT. Once OPT-OUT is selected, you will be able to choose your APK file for upload from your computer's file system. Select your APK for upload by clicking BROWSE FILES, as shown in the following screenshot: After selecting an appropriate APK, it will be uploaded to the Google Play Console. Once the upload is done, the play console will automatically add a suggested release name for your beta release. This release name is based on the version name of the uploaded APK. Modify the release name if you are not comfortable with the suggestion. Next, add a suitable release note in the text field provided. Once you are satisfied with the data you have input, save and continue by clicking the Review button at the bottom of the web page. After reviewing the beta release, you can roll it out if you have added beta testers to your app. Rolling out a beta release is not our focus, so let's divert back to our main goal: publishing the Messenger app. Having uploaded an APK for your application, you can now complete the mandatory content rating questionnaire. Click the Content rating navigation item on the sidebar and follow the instructions to do this. Once the questionnaire is complete, appropriate ratings for your application will be generated: With the completion of the content rating questionnaire, the application is ready to be published to production. Applications that are published to production are made available to all users on the Google Play Store. On the play console, navigate to App releases | Manage Production | Create releases. When prompted to upload an APK, click the ADD APK FROM LIBRARY button to the right of the screen and select the APK we previously uploaded (the APK with a version name of 1.0) and complete the necessary release details similar to how we did when creating a beta release. Click the review button at the bottom of the page once you are ready to proceed. You will be given a brief release summary in the page that follows: Go through the information presented in the summary carefully. Start the roll out to production once you have asserted that you are satisfied with the information presented to you in the summary. Once you start the roll out to production, you will be prompted to confirm your understanding that your app will become available to users of the Play Store: Click Confirm once you are ready for the app to go live on the Play Store. Congratulations! You have now published your first application to the Google Play Store! In this article, we learned how to secure and publish Android applications to the Google Play Store. We identified security threats to Android applications and fully explained ways to alleviate them, we also noted best practices to follow when developing applications for the Android ecosystem.  Finally, we took a deep dive into the process of application publication to the Play Store covering all the necessary steps for the successful publication of an Android application. You enjoyed an excerpt from the book, Kotlin Programming By Example, written by Iyanu Adelekan. This book will take on Android development with Kotlin, from building a classic game Tetris to a messenger app, a level up in terms of complexity. Build your first Android app with Kotlin Creating a custom layout implementation for your Android app  
Read more
  • 0
  • 0
  • 5583
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-getting-started-with-kotlin-programming
Sugandha Lahoti
19 Apr 2018
14 min read
Save for later

Getting started with Kotlin programming

Sugandha Lahoti
19 Apr 2018
14 min read
Learning a programming language is a daunting experience for many people and not one that most individuals generally choose to undertake. Regardless of the problem domain that you may wish to build solutions for, be it application development, networking, or distributed systems, Kotlin programming is a good choice for the development of systems to achieve the required solutions. In other words, a developer can't go wrong with learning Kotlin.  In this article, you will learn the following: The fundamentals of the Kotlin programming language The installation of Kotlin Compiling and running Kotlin programs Working with an IDE Kotlin is a strongly-typed, object-oriented language that runs on the Java Virtual Machine (JVM) and can be used to develop applications in numerous problem domains. In addition to running on the JVM, Kotlin can be compiled to JavaScript, and as such, is an equally strong choice for developing client-side web applications. Kotlin can also be compiled directly into native binaries that run on systems without a virtual machine via Kotlin/Native. The Kotlin programming language was primarily developed by JetBrains – a company based in Saint Petersburg, Russia. The developers at JetBrains are the current maintainers of the language. Kotlin was named after Kotlin island – an island near Saint Petersburg. Kotlin was designed for use in developing industrial-strength software in many domains but has seen the majority of its users come from the Android ecosystem. At the time of writing this post, Kotlin is one of the three languages that have been declared by Google as an official language for Android. Kotlin is syntactically similar to Java. As a matter of fact, it was designed to be a better alternative to Java. As a consequence, there are numerous significant advantages to using Kotlin instead of Java in software development.  Getting started with Kotlin In order to develop the Kotlin program, you will first need to install the Java Runtime Environment (JRE) on your computer. The JRE can be downloaded prepackaged along with a Java Development Kit (JDK). For the sake of this installation, we will be using the JDK. The easiest way to install a JDK on a computer is to utilize one of the JDK installers made available by Oracle (the owners of Java). There are different installers available for all major operating systems. Releases of the JDK can be downloaded from http://www.oracle.com/technetwork/java/javase/downloads/index.html: Clicking on the JDK download button takes you to a web page where you can download the appropriate JDK for your operating system and CPU architecture. Download a JDK suitable for your computer and continue to the next section: JDK installation In order to install the JDK on your computer, check out the necessary installation information from the following sections, based on your operating system. Installation on Windows The JDK can be installed on Windows in four easy steps: Double-click the downloaded installation file to launch the JDK installer. Click the Next button in the welcome window. This action will lead you to a window where you can select the components you want to install. Leave the selection at the default and click Next. The following window prompts the selection of the destination folder for the installation. For now, leave this folder as the default (also take note of the location of this folder, as you will need it in a later step). Click Next. Follow the instructions in the upcoming windows and click Next when necessary. You may be asked for your administrator's password, enter it when necessary. Java will be installed on your computer. After the JDK installation has concluded, you will need to set the JAVA_HOME environment variable on your computer. To do this: Open your Control Panel. Select Edit environment variable. In the window that has opened, click the New button. You will be prompted to add a new environment variable. Input JAVA_HOME as the variable name and enter the installation path of the JDK as the variable value. Click OK once to add the environment variable. Installation on macOS In order to install the JDK on macOS, perform the following steps: Download your desired JDK .dmg file. Locate the downloaded .dmg file and double-click it. A finder window containing the JDK package icon is opened. Double-click this icon to launch the installer. Click Continue on the introduction window. Click Install on the installation window that appears. Enter the administrator login and password when required and click Install Software. The JDK will be installed and a confirmation window displayed. Installation on Linux Installation of the JDK on Linux is easy and straightforward using apt-get: Update the package index of your computer. From your terminal, run: sudo apt-get update Check whether Java is already installed by running the following: java -version You'll know Java is installed if the version information for a Java install on your system is printed. If no version is currently installed, run: sudo apt-get install default-jdk That's it! The JDK will be installed on your computer. Compiling Kotlin programs Now that we have the JDK set up and ready for action, we need to install a means to actually compile and run our Kotlin programs. Kotlin programs can be either compiled directly with the Kotlin command-line compiler or built and run with the Integrated Development Environment (IDE). Working with the command-line compiler The command-line compiler can be installed via Homebrew, SDKMAN!, and MacPorts. Another option for setting up the command-line compiler is by manual installation. Installing the command-line compiler on macOS The Kotlin command-line compiler can be installed on macOS in various ways. The two most common methods for its installation on macOS are via Homebrew and MacPorts. Homebrew Homebrew is a package manager for the macOS systems. It is used extensively for the installation of packages required for building software projects. To install Homebrew, locate your macOS terminal and run: /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" You will have to wait a few seconds for the download and installation of Homebrew. After installation, check to see whether Homebrew is working properly by running the following command in your terminal: brew -v If the current version of Homebrew installed on your computer is printed out in the terminal, Homebrew has been successfully installed on your computer. After properly installing Homebrew, locate your terminal and execute the following command: brew install kotlin Wait for the installation to finish, after which you are ready to compile Kotlin programs with the command-line compiler. MacPorts Similar to HomeBrew, MacPorts is a package manager for macOS. Installing MacPorts is easy. It can be installed on a system by: Installing Xcode and the Xcode command-line tools. Agreeing to the Xcode license. This can be done in the terminal by running xcodebuild -license. Installing the required version of MacPorts. MacPort versions can be downloaded from https://www.macports.org/install.php. Once downloaded, locate your terminal and run port install kotlin as the superuser: sudo port install kotlin Installing the command-line compiler on Linux Linux users can easily install the command-line compiler for Kotlin with SDKMAN! SDKMAN! This can be used to install packages on Unix-based systems such as Linux and its various distributions, for example, Fedora and Solaris. SDKMAN! can be installed in three easy steps: Download the software on to your system with curl. Locate your terminal and run: curl -s "https://get.sdkman.io" | bash After you run the preceding command, a set of instructions will come up in your terminal. Follow these instructions to complete the installation. Upon completing the instructions, run: source "$HOME/.sdkman/bin/sdkman-init.sh" Run the following: sdk version If the version number of SDKMAN! just installed is printed in your terminal window, the installation was successful. Now that we have SDKMAN! successfully installed on our system, we can install the command-line compiler by running: sdk install kotlin Installing the command-line compiler on Windows In order to use the Kotlin command-line compilers on Windows: Download a GitHub release of the software from https://github.com/JetBrains/kotlin/releases/tag/v1.2.30 Locate and unzip the downloaded file Open the extracted kotlincbin folder Start the command prompt with the folder path You can now make use of the Kotlin compiler from your command line. Running your first Kotlin program Now that we have our command-line compiler set up, let's try it out with a simple Kotlin program. Navigate to your home directory and create a new file named Hello.kt. All Kotlin files have a .kt extension appended to the end of the filename. Open the file you just created in a text editor of your choosing and input the following: // The following program prints Hello world to the standard system output. fun main (args: Array<String>) { println("Hello world!") } Save the changes made to the program file. After the changes have been saved, open your terminal window and input the following command: kotlinc hello.kt -include-runtime -d hello.jar The preceding command compiles your program into an executable, hello.jar. The -include- runtime flag is used to specify that you want the compiled JAR to be self-contained. By adding this flag to the command, the Kotlin runtime library will be included in your JAR. The -d flag specifies that, in this case, we want the output of the compiler to be called. Now that we have compiled our first Kotlin program, we need to run it—after all, there's no fun in writing programs if they can't be run later on. Open your terminal, if it's not already open, and navigate to the directory where the JAR was saved to (in this case, the home directory).  To run the compiled JAR, perform the following: java -jar hello.jar After running the preceding command, you should see Hello world! printed on your display. Congratulations, you have just written your first Kotlin program! Writing scripts with Kotlin As previously stated, Kotlin can be used to write scripts. Scripts are programs that are written for specific runtime environments for the common purpose of automating the execution of tasks. In Kotlin, scripts have the .kts file extension appended to the file name. Writing a Kotlin script is similar to writing a Kotlin program. In fact, a script written in Kotlin is exactly like a regular Kotlin program! The only significant difference between a Kotlin script and regular Kotlin program is the absence of a main function. Create a file in a directory of your choosing and name it NumberSum.kts. Open the file and input the following program: val x: Int = 1 val y: Int = 2 val z: Int = x + y println(z) As you've most likely guessed, the preceding script will print the sum of 1 and 2 to the standard system output. Save the changes to the file and run the script: kotlinc -script NumberSum.kts A significant thing to take note of is that a Kotlin script does not need to be compiled. Using the REPL REPL is an acronym that stands for Read–Eval–Print Loop. An REPL is an interactive shell environment in which programs can be executed with immediate results given. The interactive shell environment can be invoked by running the kotlinc command without any arguments. The Kotlin REPL can be started by running kotlinc in your terminal. If the REPL is successfully started, a welcome message will be printed in your terminal followed by >>> on the next line, alerting us that the REPL is awaiting input. Now you can type in code within the terminal, as you would in any text editor, and get immediate feedback from the REPL. This is demonstrated in the following screenshot: In the preceding screenshot, the 1 and 2 integers are assigned to x and y, respectively. The sum of x and y is stored in a new z variable and the value held by z is printed to the display with the print() function. Working with an IDE Writing programs with the command line has its uses, but in most cases, it is better to use software built specifically for the purpose of empowering developers to write programs. This is especially true in cases where a large project is being worked on. An IDE is a computer application that hosts a collection of tools and utilities for computer programmers for software development. There are a number of IDEs that can be used for Kotlin development. Out of these IDEs, the one with the most comprehensive set of features for the purpose of developing Kotlin applications is IntelliJ IDEA. As IntelliJ IDEA is built by the creators of Kotlin, there are numerous advantages in using it over other IDEs, such as an unparalleled feature set of tools for writing Kotlin programs, as well as timely updates that cater to the newest advancements and additions to the Kotlin programming language. Installing IntelliJ IDEA IntelliJ IDEA can be downloaded for Windows, macOS, and Linux directly from JetBrains' website: https://www.jetbrains.com/idea/download. On the web page, you are presented with two available editions for download: a paid Ultimate edition and a free Community edition. The Community edition is sufficient if you wish to run the programs in this chapter. Select the edition you wish to download: Once the download is complete, double-click on the downloaded file and install it on your operating system as you would any program. Setting up a Kotlin project with IntelliJ The process of setting up a Kotlin project with IntelliJ is straightforward: Start the IntelliJ IDE application. Click Create New Project. Select Java from the available project options on the left-hand side of the newly opened window. Add Kotlin/JVM as an additional library to the project. Pick a project SDK from the drop-down list in the window. Click Next. Select a template if you wish to use one, then continue to the next screen. Provide a project name in the input field provided. Name the project HelloWorld for now. Set a project location in the input field. Click Finish. Your project will be created and you will be presented with the IDE window: To the left of the window, you will immediately see the project view. This view shows the logical structure of your project files. Two folders are present. These are: .idea: This contains IntelliJ's project-specific settings files. src: This is the source folder of your project. You will place your program files in this folder. Now that the project is set up, we will write a simple program. Add a file named hello.kt to the source folder (right-click the src folder, select New | Kotlin File/Class, and name the file hello). Copy and paste the following code into the file: fun main(args: Array<String>) { println("Hello world!") } To run the program, click the Kotlin logo adjacent to the main function and select Run HelloKt: The project will be built and run, after which, Hello world! will be printed to the standard system output. Advantages of Kotlin As previously discussed, Kotlin was designed to be a better Java, and as such, there are a number of advantages to using Kotlin over Java: Null safety: One common occurrence in Java programs is the throwing of NullPointerException. Kotlin alleviates this issue by providing a null-safe type system. Presence of extension functions: Functions can easily be added to classes defined in program files to extend their functionality in various ways. This can be done with extension functions in Kotlin. Singletons: It is easy to implement the singleton pattern in Kotlin programs. The implementation of a singleton in Java takes considerably more effort than when it is done with Kotlin. Data classes: When writing programs, it is a common scenario to have to create a class for the sole purpose of holding data in variables. This often leads to the writing of many lines of code for such a mundane task. Data classes in Kotlin make it extremely easy to create such classes that hold data with a single line of code. Function types: Unlike Java, Kotlin has function types. This enables functions to accept other functions as parameters and the definition of functions that return functions. To summarize, we introduced Kotlin and explored the fundamentals. In the process, we learned how to install, write and run Kotlin scripts on a computer and how to use the REPL and IDE. This tutorial is an excerpt from the book, Kotlin Programming By Example, written by Iyanu Adelekan. This book will help you enhance your Kotlin programming skills by building real-world applications. Build your first Android app with Kotlin How to convert Java code into Kotlin  
Read more
  • 0
  • 0
  • 12431

article-image-build-first-android-app-kotlin
Aarthi Kumaraswamy
13 Apr 2018
10 min read
Save for later

Build your first Android app with Kotlin

Aarthi Kumaraswamy
13 Apr 2018
10 min read
Android application with Kotlin is an area which shines. Before getting started on this journey, we must set up our systems for the task at hand. A major necessity for developing Android applications is a suitable IDE - it is not a requirement but it makes the development process easier. Many IDE choices exist for Android developers. The most popular are: Android Studio Eclipse IntelliJ IDE Android Studio is by far the most powerful of the IDEs available with respect to Android development. As a consequence, we will be utilizing this IDE in all Android-related chapters in this book. Setting up Android Studio At the time of writing, the version of Android Studio that comes bundled with full Kotlin support is Android Studio 3.0. The canary version of this software can be downloaded from this website. Once downloaded, open the downloaded package or executable and follow the installation instructions. A setup wizard exists to guide you through the IDE setup procedure: Continuing to the next setup screen will prompt you to choose which type of Android Studio setup you'd like: Select the Standard setup and continue to the next screen. Click Finish on the Verify Settings screen. Android Studio will now download the components required for your setup. You will need to wait a few minutes for the required components to download: Click Finish once the component download has completed. You will be taken to the Android Studio landing screen. You are now ready to use Android Studio: [box type="note" align="" class="" width=""]You may also want to read Benefits of using Kotlin Java for Android programming.[/box] Building your first Android application with Kotlin Without further ado, let's explore how to create a simple Android application with Android Studio. We will be building the HelloApp. The HelloApp is an app that displays Hello world! on the screen upon the click of a button. On the Android Studio landing screen, click Start a new Android Studio project. You will be taken to a screen where you will specify some details that concern the app you are about to build, such as the name of the application, your company domain, and the location of the project. Type in HelloApp as the application name and enter a company domain. If you do not have a company domain name, fill in any valid domain name in the company domain input box – as this is a trivial project, a legitimate domain name is not required. Specify the location in which you want to save this project and tick the checkbox for the inclusion of Kotlin support. After filling in the required parameters, continue to the next screen: Here, we are required to specify our target devices. We are building this application to run on smartphones specifically, hence tick the Phone and Tablet checkbox if it's not already ticked. You will notice an options menu next to each device option. This dropdown is used to specify the target API level for the project being created. An API level is an integer that uniquely identifies the framework API division offered by a version of the Android platform. Select API level 15 if not already selected and continue to the next screen: On the next screen, we are required to select an activity to add to our application. An activity is a single screen with a unique user interface—similar to a window. We will discuss activities in more depth in Chapter 2, Building an Android Application – Tetris. For now, select the empty activity and continue to the next screen. Now, we need to configure the activity that we just specified should be created. Name the activity HelloActivityand ensure the Generate Layout File and Backwards Compatibility checkboxes are ticked: Now, click the Finish button. Android Studio may take a few minutes to set up your project. Once the setup is complete, you will be greeted by the IDE window containing your project files. [box type="note" align="" class="" width=""]Errors pertaining to the absence of required project components may be encountered at any point during project development. Missing components can be downloaded from the SDK manager. [/box] Make sure that the project window of the IDE is open (on the navigation bar, select View | Tool Windows | Project) and the Android view is currently selected from the drop-down list at the top of the Project window. You will see the following files at the left-hand side of the window: app | java | com.mydomain.helloapp | HelloActivity.java: This is the main activity of your application. An instance of this activity is launched by the system when you build and run your application: app | res | layout | activity_hello.xml: The user interface for HelloActivity is defined within this XML file. It contains a TextView element placed within the ViewGroup of a ConstraintLayout. The text of the TextView has been set to Hello World! app | manifests | AndroidManifest.xml: The AndroidManifest file is used to describe the fundamental characteristics of your application. In addition, this is the file in which your application's components are defined. Gradle Scripts | build.gradle: Two build.gradle files will be present in your project. The first build.gradle file is for the project and the second is for the app module. You will most frequently work with the module's build.gradle file for the configuration of the compilation procedure of Gradle tools and the building of your app. [box type="note" align="" class="" width=""]Gradle is an open source build automation system used for the declaration of project configurations. In Android, Gradle is utilized as a build tool with the goal of building packages and managing application dependencies. [/box] Creating a user interface A user interface (UI) is the primary means by which a user interacts with an application. The user interfaces of Android applications are made by the creation and manipulation of layout files. Layout files are XML files that exist in app | res | layout. To create the layout for the HelloApp, we are going to do three things: Add a LinearLayout to our layout file Place the TextView within the LinearLayout and remove the android:text attribute it possesses Add a button to the LinearLayout Open the activity_hello.xml file if it's not already opened. You will be presented with the layout editor. If the editor is in the Design view, change it to its Text view by toggling the option at the bottom of the layout editor. Now, your layout editor should look similar to that of the following screenshot: ViewGroup that arranges child views in either a horizontal or vertical manner within a single column. Copy the code snippet of our required LinearLayout from the following block and paste it within the ConstraintLayout preceding the TextView: <LinearLayout android:id="@+id/ll_component_container" android:layout_width="match_parent" android:layout_height="match_parent" android:orientation="vertical" android:gravity="center"> </LinearLayout> Now, copy and paste the TextView present in the activity_hello.xml file into the body of the LinearLayout element and remove the android:text attribute: <LinearLayout android:id="@+id/ll_component_container" android:layout_width="match_parent" android:layout_height="match_parent" android:orientation="vertical" android:gravity="center"> <TextView android:id="@+id/tv_greeting" android:layout_width="wrap_content" android:layout_height="wrap_content"       android:textSize="50sp" /> </LinearLayout> Lastly, we need to add a button element to our layout file. This element will be a child of our LinearLayout. To create a button, we use the Button element: <LinearLayout android:id="@+id/ll_component_container" android:layout_width="match_parent" android:layout_height="match_parent" android:orientation="vertical" android:gravity="center"> <TextView android:id="@+id/tv_greeting" android:layout_width="wrap_content" android:layout_height="wrap_content"       android:textSize="50sp" /> <Button       android:id="@+id/btn_click_me" android:layout_width="wrap_content" android:layout_height="wrap_content" android:layout_marginTop="16dp" android:text="Click me!"/> </LinearLayout> Toggle to the layout editor's design view to see how the changes we have made thus far translate when rendered on the user interface: Now we have our layout, but there's a problem. Our CLICK ME! button does not actually do anything when clicked. We are going to fix that by adding a listener for click events to the button. Locate and open the HelloActivity.java file and edit the function to add the logic for the CLICK ME! button's click event as well as the required package imports, as shown in the following code: package com.mydomain.helloapp import android.support.v7.app.AppCompatActivity import android.os.Bundle import android.text.TextUtils import android.widget.Button import android.widget.TextView import android.widget.Toast class HelloActivity : AppCompatActivity() { override fun onCreate(savedInstanceState: Bundle?) { super.onCreate(savedInstanceState) setContentView(R.layout.activity_hello) val tvGreeting = findViewById<TextView>(R.id.tv_greeting) val btnClickMe = findViewById<Button>(R.id.btn_click_me) btnClickMe.setOnClickListener { if (TextUtils.isEmpty(tvGreeting.text)) { tvGreeting.text = "Hello World!" } else { Toast.makeText(this, "I have been clicked!",                       Toast.LENGTH_LONG).show() } } } } In the preceding code snippet, we have added references to the TextView and Button elements present in our activity_hello layout file by utilizing the findViewById function. The findViewById function can be used to get references to layout elements that are within the currently-set content view. The second line of the onCreate function has set the content view of HelloActivity to the activity_hello.xml layout. Next to the findViewById function identifier, we have the TextView type written between two angular brackets. This is called a function generic. It is being used to enforce that the resource ID being passed to the findViewById belongs to a TextView element. After adding our reference objects, we set an onClickListener to btnClickMe. Listeners are used to listen for the occurrence of events within an application. In order to perform an action upon the click of an element, we pass a lambda containing the action to be performed to the element's setOnClickListener method. When btnClickMe is clicked, tvGreeting is checked to see whether it has been set to contain any text. If no text has been set to the TextView, then its text is set to Hello World!, otherwise a toast is displayed with the I have been clicked! text. Running the Android application In order to run the application, click the Run 'app' (^R) button at the top-right side of the IDE window and select a deployment target. The HelloApp will be built, installed, and launched on the deployment target: You may use one of the available prepackaged virtual devices or create a custom virtual device to use as the deployment target.  You may also decide to connect a physical Android device to your computer via USB and select it as your target. The choice is up to you. After selecting a deployment device, click OK to build and run the application. Upon launching the application, our created layout is rendered: When CLICK ME! is clicked, Hello World! is shown to the user: Subsequent clicks of the CLICK ME! button display a toast message with the text I have been clicked!: You enjoyed an excerpt from the book, Kotlin Programming By Example by Iyanu Adelekan. Start building and deploying Android apps with Kotlin using this book. Check out other related posts: Creating a custom layout implementation for your Android app Top 5 Must-have Android Applications OpenCV and Android: Making Your Apps See      
Read more
  • 0
  • 0
  • 7992

article-image-creating-a-custom-layout-implementation-for-your-android-app
Aarthi Kumaraswamy
06 Apr 2018
5 min read
Save for later

Creating a custom layout implementation for your Android app

Aarthi Kumaraswamy
06 Apr 2018
5 min read
In most applications, you'll find that a combination of the ConstraintLayout, CoordinatorLayout, and some of the more primitive layout classes (such as LinearLayout and FrameLayout) are more than enough to achieve any layout requirements you can dream up for your user interface. Every now and again though, you'll find yourself needing a custom layout manager to achieve an effect required for the application. Layout classes extend from the ViewGroup class, and their job is to tell their child widgets where to position themselves, and how large they should be. They do this in two phases: the measurement phase and the layout phase. All View implementations are expected to provide measurements for their actual size according to specifications. These measurements are then used by the View widget's parent ViewGroup to allocate the amount of space the widget will consume on the screen. For example, a View might be told to consume, at most, the screen width. The View must then determine how much of that space it actually requires, and records that size in its measured dimensions. The measured dimensions are then used by the parent ViewGroup during the layout process. The second phase is the layout phase, and it is conducted by the ViewGroup parent of each View widget. This phase positions the View on the screen, relative to its parent ViewGroup location, and specifies the actual size that the widget will consume on the screen (typically based on the measured size calculated in the measurement phase). When you implement your own ViewGroup, you'll need to ensure that all of your child View widgets are given a chance to measure themselves before you perform the actual layout operations. Let's build a layout class to arrange its children in a circle. To keep the implementation simple, we'll assume that all the child widgets are the same size (for example, if they were all icons): Right-click on the widget package in the travel claim example app, and select New|Java Class. Name the new class CircleLayout. Change the Superclass to android.view.ViewGroup. Click OK to create the new class. Declare the standard ViewGroup constructors: public CircleLayout(final Context context) {  super(context); } public CircleLayout(    final Context context,    final AttributeSet attrs) {  super(context, attrs); } public CircleLayout(      final Context context,      final AttributeSet attrs,      final int defStyleAttr) {  super(context, attrs, defStyleAttr); } Override the onMeasure method to calculate the size of the CircleLayout and all of its child Viewwidgets. The measurement specifications are passed in as int values, which are interpreted using the staticmethods in the MeaureSpec class. Measurement specifications come in two flavors: at most and exactly, and each has a size value attached. In this particular layout, we always measure the CircleLayout as the size given in the specification. This means that the CircleLayout will always consume the maximum amount of space available. It also expects all of its children to be able to specify sizes without the match_parent attribute (as this will cause each child to take up all the available space): @Override protected void onMeasure(    final int widthMeasureSpec,    final int heightMeasureSpec) {  super.onMeasure(widthMeasureSpec, heightMeasureSpec);  measureChildren(widthMeasureSpec, heightMeasureSpec);  setMeasuredDimension(        MeasureSpec.getSize(widthMeasureSpec),        MeasureSpec.getSize(heightMeasureSpec)); } The next method to implement is the onLayout method. This performs the actual arrangement of the child View widget within the CircleLayout, by invoking their layout method. The layout method should never be overridden, because it's closely tied to the platform and performs several other important actions (such as notifying layout listeners). Instead, you should override onLayout, but invoking layout.CircleLayoutassumes that all the child View widgets are of the same size (and forces this as part of the onLayoutimplementation). This onLayout method simply calculates the available space, and then positions the child View widgets in a circle around the outside edge: protected void onLayout( final boolean changed, final int left, final int top, final int right, final int bottom) { final int childCount = getChildCount(); if (childCount == 0) { return; } final int width = right - left; final int height = bottom - top; // if we have children, we assume they're all the same size final int childrenWidth = getChildAt(0).getMeasuredWidth(); final int childrenHeight = getChildAt(0).getMeasuredHeight(); final int boxSize = Math.min( width - childrenWidth, height - childrenHeight); for (int i = 0; i < childCount; i++) { final View child = getChildAt(i); final int childWidth = child.getMeasuredWidth(); final int childHeight = child.getMeasuredHeight(); final double x = Math.sin((Math.PI * 2.0) * ((double) i / (double) childCount)); final double y = -Math.cos((Math.PI * 2.0) * ((double) i / (double) childCount)); final int childLeft = (int) (x * (boxSize / 2)) + (width / 2) - (childWidth / 2); final int childTop = (int) (y * (boxSize / 2)) + (height / 2) - (childHeight / 2); final int childRight = childLeft + childWidth; final int childBottom = childTop + childHeight; child.layout(childLeft, childTop, childRight, childBottom); } } Although the implementation of the onLayout method is quite long, it's also relatively simple. Most of the code is concerned with determining the desired position of the child View widgets. Layout code needs to execute as quickly as possible, and should avoid allocating any objects during the onMeasure and onLayout methods (similar to the rules of onDraw). Layout is a critical part of building the screen from a performance standpoint, because no rendering can actually occur without the layout being completed. The layout will also be rerun every time the layout changes its structure. For example, if you add or remove any child View widgets, or change the size or position of the ViewGroup. Changing the size of a ViewGroup might happen on every frame if you use a CoordinatorLayout, where the ViewGroup is being collapsed (or if you change its size as part of a property-animation). You read an excerpt from the book, Hands-On Android UI Development by Jason Morris. For more recipes on cutting edge Android UI tasks such as creating themes, animations, custom widgets and more, give this book a try.  
Read more
  • 0
  • 0
  • 4193

article-image-internationalization-and-localization
Packt
03 Mar 2018
16 min read
Save for later

Internationalization and localization

Packt
03 Mar 2018
16 min read
In this article by Dmitry Sheiko, the author of the book, Cross Platform Desktop Application Development: Electron, Node, NW.js and React, will cover the concept of Internationalization and localization and will be also covering context menu and system clipboard in detail. Internationalization, often abbreviated as i18n, implies a particular software design capable of adapting to the requirements of target local markets. In other words if we want to distribute our application to the markets other than USA we need to take care of translations, formatting of datetime, numbers, addresses, and such. (For more resources related to this topic, see here.) Date format by country Internationalization is a cross-cutting concern. When you are changing the locale it usually affects multiple modules. So I suggest going with the observer pattern that we already examined while working on DirService'. The ./js/Service/I18n.js file contains the following code: const EventEmitter = require( "events" ); class I18nService extends EventEmitter { constructor(){ super(); this.locale = "en-US"; } Internationalization and localization [ 2 ] notify(){ this.emit( "update" ); } } As you see, we can change the locale by setting a new value to locale property. As soon as we call notify method, then all the subscribed modules immediately respond. But locale is a public property and therefore we have no control on its access and mutation. We can fix it by using overloading. The ./js/Service/I18n.js file contains the following code: //... constructor(){ super(); this._locale = "en-US"; } get locale(){ return this._locale; } set locale( locale ){ // validate locale... this._locale = locale; } //... Now if we access locale property of I18n instance it gets delivered by the getter (get locale). When setting it a value, it goes through the setter (set locale). Thus we can add extra functionality such as validation and logging on property access and mutation. Remember we have in the HTML, a combobox for selecting language. Why not give it a view? The ./js/View/LangSelector.j file contains the following code: class LangSelectorView { constructor( boundingEl, i18n ){ boundingEl.addEventListener( "change", this.onChanged.bind( this ), false ); this.i18n = i18n; } onChanged( e ){ const selectEl = e.target; this.i18n.locale = selectEl.value; this.i18n.notify(); } } Internationalization and localization [ 3 ] exports.LangSelectorView = LangSelectorView; In the preceding code, we listen for change events on the combobox. When the event occurs we change locale property of the passed in I18n instance and call notify to inform the subscribers. The ./js/app.js file contains the following code: const i18nService = new I18nService(), { LangSelectorView } = require( "./js/View/LangSelector" ); new LangSelectorView( document.querySelector( "[data-bind=langSelector]" ), i18nService ); Well, we can change the locale and trigger the event. What about consuming modules? In FileList view we have static method formatTime that formats the passed in timeString for printing. We can make it formated in accordance with currently chosen locale. The ./js/View/FileList.js file contains the following code: constructor( boundingEl, dirService, i18nService ){ //... this.i18n = i18nService; // Subscribe on i18nService updates i18nService.on( "update", () => this.update( dirService.getFileList() ) ); } static formatTime( timeString, locale ){ const date = new Date( Date.parse( timeString ) ), options = { year: "numeric", month: "numeric", day: "numeric", hour: "numeric", minute: "numeric", second: "numeric", hour12: false }; return date.toLocaleString( locale, options ); } update( collection ) { //... this.el.insertAdjacentHTML( "beforeend", `<li class="file-list__li" data-file="${fInfo.fileName}"> <span class="file-list__li__name">${fInfo.fileName}</span> <span class="filelist__li__size">${filesize(fInfo.stats.size)}</span> <span class="file-list__li__time">${FileListView.formatTime( fInfo.stats.mtime, this.i18n.locale )}</span> </li>` ); //... } //... In the constructor, we subscribe for I18n update event and update the file list every time the locale changes. Static method formatTime converts passed in string into a Date object and uses Date.prototype.toLocaleString() method to format the datetime according to a given locale. This method belongs to so called The ECMAScript Internationalization API (http://norbertlindenberg.com/2012/12/ecmascript-internationalization-api/index .html). The API describes methods of built-in object String, Date and Number designed to format and compare localized data. But what it really does is formatting a Date instance with toLocaleString for the English (United States) locale ("en-US") and it returns the date as follows: 3/17/2017, 13:42:23 However if we feed to the method German locale ("de-DE") we get quite a different result: 17.3.2017, 13:42:23 To put it into action we set an identifier to the combobox. The ./index.html file contains the following code: .. <select class="footer__select" data-bind="langSelector"> .. And of course, we have to create an instance of I18n service and pass it in LangSelectorView and FileListView: ./js/app.js // ... const { I18nService } = require( "./js/Service/I18n" ), { LangSelectorView } = require( "./js/View/LangSelector" ), i18nService = new I18nService(); new LangSelectorView( document.querySelector( "[data-bind=langSelector]" ), i18nService ); // ... new FileListView( document.querySelector( "[data-bind=fileList]" ), dirService, i18nService ); Now we start the application. Yeah! As we change the language in the combobox the file modification dates adjust accordingly: Multilingual support Localization dates and number is a good thing, but it would be more exciting to provide translation to multiple languages. We have a number of terms across the application, namely the column titles of the file list and tooltips (via title attribute) on windowing action buttons. What we need is a dictionary. Normally it implies sets of token translation pairs mapped to language codes or locales. Thus when you request from the translation service a term, it can correlate to a matching translation according to currently used language/locale. Here I have suggested making the dictionary as a static module that can be loaded with the required function. The ./js/Data/dictionary.js file contains the following code: exports.dictionary = { "en-US": { NAME: "Name", SIZE: "Size", MODIFIED: "Modified", MINIMIZE_WIN: "Minimize window", Internationalization and localization [ 6 ] RESTORE_WIN: "Restore window", MAXIMIZE_WIN: "Maximize window", CLOSE_WIN: "Close window" }, "de-DE": { NAME: "Dateiname", SIZE: "Grösse", MODIFIED: "Geändert am", MINIMIZE_WIN: "Fenster minimieren", RESTORE_WIN: "Fenster wiederherstellen", MAXIMIZE_WIN: "Fenster maximieren", CLOSE_WIN: "Fenster schliessen" } }; So we have two locales with translations per term. We are going to inject the dictionary as a dependency into our I18n service. The ./js/Service/I18n.js file contains the following code: //... constructor( dictionary ){ super(); this.dictionary = dictionary; this._locale = "en-US"; } translate( token, defaultValue ) { const dictionary = this.dictionary[ this._locale ]; return dictionary[ token ] || defaultValue; } //... We also added a new method translate that accepts two parameters: token and default translation. The first parameter can be one of the keys from the dictionary like NAME. The second one is guarding value for the case when requested token does not yet exist in the dictionary. Thus we still get a meaningful text at least in English. Let's see how we can use this new method. The ./js/View/FileList.js file contains the following code: //... update( collection ) { this.el.innerHTML = `<li class="file-list__li file-list__head"> <span class="file-list__li__name">${this.i18n.translate( "NAME", "Name" )}</span> <span class="file-list__li__size">${this.i18n.translate( "SIZE", Internationalization and localization [ 7 ] "Size" )}</span> <span class="file-list__li__time">${this.i18n.translate( "MODIFIED", "Modified" )}</span> </li>`; //... We change in FileList view hardcoded column titles with calls for translate method of I18n instance, meaning that every time view updates it receives the actual translations. We shall not forget about TitleBarActions view where we have windowing action buttons. The ./js/View/TitleBarActions.js file contains the following code: constructor( boundingEl, i18nService ){ this.i18n = i18nService; //... // Subscribe on i18nService updates i18nService.on( "update", () => this.translate() ); } translate(){ this.unmaximizeEl.title = this.i18n.translate( "RESTORE_WIN", "Restore window" ); this.maximizeEl.title = this.i18n.translate( "MAXIMIZE_WIN", "Maximize window" ); this.minimizeEl.title = this.i18n.translate( "MINIMIZE_WIN", "Minimize window" ); this.closeEl.title = this.i18n.translate( "CLOSE_WIN", "Close window" ); } Here we add method translate, which updates button title attributes with actual translations. We subscribe for i18n update event to call the method every time user changes locale:   Context menu Well, with our application we can already navigate through the file system and open files. Yet, one might expect more of a File Explorer. We can add some file related actions like delete, copy/paste. Usually these tasks are available via the context menu, what gives us a good opportunity to examine how to make it with NW.js. With the environment integration API we can create an instance of system menu (http://docs.nwjs.io/en/latest/References/Menu/). Then we compose objects representing menu items and attach them to the menu instance (http://docs.nwjs.io/en/latest/References/MenuItem/). This menu can be shown in an arbitrary position: const menu = new nw.Menu(), menutItem = new nw.MenuItem({ label: "Say hello", click: () => console.log( "hello!" ) }); menu.append( menu ); menu.popup( 10, 10 ); Yet our task is more specific. We have to display the menu on the right mouse click in the position of the cursor. That is, we achieve by subscribing a handler to contextmenu DOM event: document.addEventListener( "contextmenu", ( e ) => { console.log( `Show menu in position ${e.x}, ${e.y}` ); }); Now whenever we right-click within the application window the menu shows up. It's not exactly what we want, isn't it? We need it only when the cursor resides within a particular region. For an instance, when it hovers a file name. That means we have to test if the target element matches our conditions: document.addEventListener( "contextmenu", ( e ) => { const el = e.target; if ( el instanceof HTMLElement && el.parentNode.dataset.file ) { console.log( `Show menu in position ${e.x}, ${e.y}` ); } }); Here we ignore the event until the cursor hovers any cell of file table row, given every row is a list item generated by FileList view and therefore provided with a value for data file attribute. This passage explains pretty much how to build a system menu and how to attach it to the file list. But before starting on a module capable of creating menu, we need a service to handle file operations. The ./js/Service/File.js file contains the following code: const fs = require( "fs" ), path = require( "path" ), // Copy file helper cp = ( from, toDir, done ) => { const basename = path.basename( from ), to = path.join( toDir, basename ), write = fs.createWriteStream( to ) ; fs.createReadStream( from ) .pipe( write ); write .on( "finish", done ); }; class FileService { Internationalization and localization [ 10 ] constructor( dirService ){ this.dir = dirService; this.copiedFile = null; } remove( file ){ fs.unlinkSync( this.dir.getFile( file ) ); this.dir.notify(); } paste(){ const file = this.copiedFile; if ( fs.lstatSync( file ).isFile() ){ cp( file, this.dir.getDir(), () => this.dir.notify() ); } } copy( file ){ this.copiedFile = this.dir.getFile( file ); } open( file ){ nw.Shell.openItem( this.dir.getFile( file ) ); } showInFolder( file ){ nw.Shell.showItemInFolder( this.dir.getFile( file ) ); } }; exports.FileService = FileService; What's going on here? FileService receives an instance of DirService as a constructor argument. It uses the instance to obtain the full path to a file by name ( this.dir.getFile( file ) ). It also exploits notify method of the instance to request all the views subscribed to DirService to update. Method showInFolder calls the corresponding method of nw.Shell to show the file in the parent folder with the system file manager. As you can recon method remove deletes the file. As for copy/paste we do the following trick. When user clicks copy we store the target file path in property copiedFile. So when user next time clicks paste we can use it to copy that file to the supposedly changed current location. Method open evidently opens file with the default associated program. That is what we do in FileList view directly. Actually this action belongs to FileService. So we rather refactor the view to use the service. The ./js/View/FileList.js file contains the following code: constructor( boundingEl, dirService, i18nService, fileService ){ this.file = fileService; //... } Internationalization and localization [ 11 ] bindUi(){ //... this.file.open( el.dataset.file ); //... } Now we have a module to handle context menu for a selected file. The module will subscribe for contextmenu DOM event and build a menu when user right clicks on a file. This menu will contain items Show Item in the Folder, Copy, Paste, and Delete. Whereas copy and paste are separated from other items with delimiters. Besides, Paste will be disabled until we store a file with copy. Further goes the source code. The ./js/View/ContextMenu.js file contains the following code: class ConextMenuView { constructor( fileService, i18nService ){ this.file = fileService; this.i18n = i18nService; this.attach(); } getItems( fileName ){ const file = this.file, isCopied = Boolean( file.copiedFile ); return [ { label: this.i18n.translate( "SHOW_FILE_IN_FOLDER", "Show Item in the Folder" ), enabled: Boolean( fileName ), click: () => file.showInFolder( fileName ) }, { type: "separator" }, { label: this.i18n.translate( "COPY", "Copy" ), enabled: Boolean( fileName ), click: () => file.copy( fileName ) }, { label: this.i18n.translate( "PASTE", "Paste" ), enabled: isCopied, click: () => file.paste() }, { type: "separator" }, { Internationalization and localization [ 12 ] label: this.i18n.translate( "DELETE", "Delete" ), enabled: Boolean( fileName ), click: () => file.remove( fileName ) } ]; } render( fileName ){ const menu = new nw.Menu(); this.getItems( fileName ).forEach(( item ) => menu.append( new nw.MenuItem( item ))); return menu; } attach(){ document.addEventListener( "contextmenu", ( e ) => { const el = e.target; if ( !( el instanceof HTMLElement ) ) { return; } if ( el.classList.contains( "file-list" ) ) { e.preventDefault(); this.render() .popup( e.x, e.y ); } // If a child of an element matching [data-file] if ( el.parentNode.dataset.file ) { e.preventDefault(); this.render( el.parentNode.dataset.file ) .popup( e.x, e.y ); } }); } } exports.ConextMenuView = ConextMenuView; So in ConextMenuView constructor, we receive instances of FileService and I18nService. During the construction we also call attach method that subscribes for contextmenu DOM event, creates the menu and shows it in the position of the mouse cursor. The event gets ignored unless the cursor hovers a file or resides in empty area of the file list component. When user right clicks the file list, the menu still appears, but with all items disable except paste (in case a file was copied before). Method render create an instance of menu and populates it with nw.MenuItems created by getItems method. The method creates an array representing menu items. Elements of the array are object literals. Internationalization and localization [ 13 ] Property label accepts translation for item caption. Property enabled defines the state of item depending on our cases (whether we have copied file or not, whether the cursor on a file or not). Finally property click expects the handler for click event. Now we need to enable our new components in the main module. The ./js/app.js file contains the following code: const { FileService } = require( "./js/Service/File" ), { ConextMenuView } = require( "./js/View/ConextMenu" ), fileService = new FileService( dirService ); new FileListView( document.querySelector( "[data-bind=fileList]" ), dirService, i18nService, fileService ); new ConextMenuView( fileService, i18nService ); Let's now run the application, right-click on a file and voilà! We have the context menu and new file actions. System clipboard Usually Copy/Paste functionality involves system clipboard. NW.js provides an API to control it (http://docs.nwjs.io/en/latest/References/Clipboard/). Unfortunately it's quite limited, we cannot transfer an arbitrary file between applications, what you may expect of a file manager. Yet some things we are still available to us. Transferring text In order to examine text transferring with the clipboard we modify the method copy of FileService: copy( file ){ this.copiedFile = this.dir.getFile( file ); const clipboard = nw.Clipboard.get(); clipboard.set( this.copiedFile, "text" ); } What does it do? As soon as we obtained file full path, we create an instance of nw.Clipboard and save the file path there as a text. So now, after copying a file within the File Explorer we can switch to an external program (for example, a text editor) and paste the copied path from the clipboard. Transferring graphics It doesn't look very handy, does it? It would be more interesting if we could copy/paste a file. Unfortunately NW.js doesn't give us many options when it comes to file exchange. Yet we can transfer between NW.js application and external programs PNG and JPEG images. The ./js/Service/File.js file contains the following code: //... copyImage( file, type ){ const clip = nw.Clipboard.get(), // load file content as Base64 data = fs.readFileSync( file ).toString( "base64" ), // image as HTML html = `<img src="file:///${encodeURI( data.replace( /^//, "" ) )}">`; // write both options (raw image and HTML) to the clipboard clip.set([ Internationalization and localization [ 16 ] { type, data: data, raw: true }, { type: "html", data: html } ]); } copy( file ){ this.copiedFile = this.dir.getFile( file ); const ext = path.parse( this.copiedFile ).ext.substr( 1 ); switch ( ext ){ case "jpg": case "jpeg": return this.copyImage( this.copiedFile, "jpeg" ); case "png": return this.copyImage( this.copiedFile, "png" ); } } //... We extended our FileService with private method copyImage. It reads a given file, converts its contents in Base64 and passes the resulting code in a clipboard instance. In addition, it creates HTML with image tag with Base64-encoded image in data Uniform Resource Identifier (URI). Now after copying an image (PNG or JPEG) in the File Explorer, we can paste it in an external program such as graphical editor or text processor. Receiving text and graphics We've learned how to pass a text and graphics from our NW.js application to external programs. But how can we receive data from outside? As you can guess it is accessible through get method of nw.Clipboard. Text can be retrieved that simple: const clip = nw.Clipboard.get(); console.log( clip.get( "text" ) ); When graphic is put in the clipboard we can get it with NW.js only as Base64-encoded content or as HTML. To see it in practice we add a few methods to FileService. The ./js/Service/File.js file contains the following code: //... hasImageInClipboard(){ const clip = nw.Clipboard.get(); return clip.readAvailableTypes().indexOf( "png" ) !== -1; } pasteFromClipboard(){ const clip = nw.Clipboard.get(); if ( this.hasImageInClipboard() ) { Internationalization and localization [ 17 ] const base64 = clip.get( "png", true ), binary = Buffer.from( base64, "base64" ), filename = Date.now() + "--img.png"; fs.writeFileSync( this.dir.getFile( filename ), binary ); this.dir.notify(); } } //... Method hasImageInClipboard checks if the clipboard keeps any graphics. Method pasteFromClipboard takes graphical content from the clipboard as Base64-encoded PNG. It converts the content into binary code, writes into a file and requests DirService subscribers to update. To make use of these methods we need to edit ContextMenu view. The ./js/View/ContextMenu.js file contains the following code: getItems( fileName ){ const file = this.file, isCopied = Boolean( file.copiedFile ); return [ //... { label: this.i18n.translate( "PASTE_FROM_CLIPBOARD", "Paste image from clipboard" ), enabled: file.hasImageInClipboard(), click: () => file.pasteFromClipboard() }, //... ]; } We add to the menu a new item Paste image from clipboard, which is enabled only when there is any graphic in the clipboard. Summary In this article, we have covered concept of internationalization and localization and also covered context menu and system clipboard in detail. Resources for Article:   Further resources on this subject: [article] [article] [article]
Read more
  • 0
  • 0
  • 2941
article-image-play-functions
Packt
21 Feb 2018
6 min read
Save for later

Play With Functions

Packt
21 Feb 2018
6 min read
This article by Igor Wojda and Marcin Moskala, authors of the book Android Development with Kotlin, introduces functions in Kotlin, together with different ways of calling functions. (For more resources related to this topic, see here.) Single-expression functions During typical programming, many functions contain only one expression. Here is example of this kind of function: fun square(x: Int): Int { return x * x } Or another one, which can be often found in Android projects. It is pattern used in Activity, to define methods that are just getting text from some view or providing some other data from view to allow presenter to get them: fun getEmail(): String { return emailView.text.toString() } Both functions are defined to return result of single expression. In first example it is result of x * x multiplication, and in second one it is result of expression emailView.text.toString(). This kind of functions are used all around Android projects. Here are some common use-cases: Extracting some small operations Using polymorphism to provide values specific to class Functions that are only creating some object Functions that are passing data between architecture layers (like in preceding example Activity is passing data from view to presenter) Functional programming style functions that base on recurrence Such functions are often used, so Kotlin has notation for this kind of them. When a function returns a single expression, then curly braces and body of the function can be omitted. We specify expression directly using equality character. Functions defined this way are called single-expression functions. Let's update our square function, and define it as a single-expression function: As we can see, single expression function have expression body instead of block body. This notation is shorter, but whole body needs to be just a single expression. In single-expression functions, declaring return type is optional, because it can be inferred by the compiler from type of expression. This is why we can simplify use square function, and define it this way: fun square(x: Int) = x * x There are many places inside Android application where we can utilize single expression functions. Let's consider RecyclerView adapter that is providing layout ID and creating ViewHolder: class AddressAdapter : ItemAdapter<AddressAdapter.ViewHolder>() { override fun getLayoutId() = R.layout.choose_address_view override fun onCreateViewHolder(itemView: View) = ViewHolder(itemView) // Rest of methods } In the following example, we achieve high readability thanks to single expression function. Single-expression functions are also very popular in the functional world. Single expression function notation is also well-pairing with when structure. Here example of their connection, used to get specific data from object according to key (use-case from big Kotlin project): fun valueFromBooking(key: String, booking: Booking?) = when(key) { // 1 "patient.nin" -> booking?.patient?.nin "patient.email" -> booking?.patient?.email "patient.phone" -> booking?.patient?.phone "comment" -> booking?.comment else -> null } We don't need a type, because it is inferred from when expression. Another common Android example is that we can combine when expression with activity method onOptionsItemSelected that handles top bar menu clicks: override fun onOptionsItemSelected(item: MenuItem): Boolean = when { item.itemId == android.R.id.home -> { onBackPressed() true } else -> super.onOptionsItemSelected(item) } As we can see, single expression functions can make our code more concise and improved readability. Single-expression functions are commonly used in Kotlin Android projects and they are really popular for functional programming. As an example. Let's suppose that we need to filter all the odd values from following list: val list = listOf(1, 2, 3, 4, 5) We will use following helper function that returns true if argument is odd otherwise it returns false: fun isOdd(i: Int) = i % 2 == 1 In imperative programming style, we should specify steps of processing, which are connected to execution process (iterate through list, check if value is odd, add value to one list if it's odd). Here is implementation of this functionality, that is typical for imperative style: var oddList = emptyList<Int>() for(i in list) { if(isOdd(i)) { newList += i } } In declarative programming style, the way of thinking about code is different - we should think what is the required result and simply use functions that will give us this result. Kotlin stdlib provides lot of functions supporting declarative programming style. Here is how we could implement the same functionality using one of them, called filter: var oddList = list.filter(::isOdd) filter is function that leaves only elements that are true according to predicate. Here function isOdd is used as an predicate. Different ways of calling a function Sometimes we need to call function and provide only selected arguments. In Java we could create multiple overloads of the same method, but this solution have there are some limitations. First problem is that number of possible method permutations is growing very quickly (2n) making them very difficult to maintain. Second problem is that overloads must be distinguishable from each other, so compiler will know which overload to call, so when method defines few parameters with the same type we can't define all possible overloads. That's why in Java we often need to pass multiple null values to a method: // Java printValue("abc", null, null, "!"); Multiple null parameters provide boilerplate and greatly decrease method readability. In Kotlin there is no such problem, because Kotlin has feature called default arguments and named argument syntax. Default arguments values Default arguments are mostly known from C++, which is one of the oldest languages supporting it. Default argument provides a value for a parameter in case it is not provided during method call. Each function parameter can have default value. It might be any value that is matching specified type including null. This way we can simply define functions that can be called in multiple ways We can use this function the same way as normal function (function without default argument values) by providing values for each parameter (all arguments): printValue("str", true, "","") // Prints: (str) Thanks to default argument values, we can call a function by providing arguments only for parameters without default values: printValue("str") // Prints: (str) We can also provide all parameters without default values, and only some that have a default value: printValue("str", false) // Prints: str Named arguments syntax Sometimes we want only to pass value for last argument. Let's suppose that we define want to define value for suffix, but not for prefix and inBracket (which are defined before suffix). Normally we would have to provide values for all previous parameters including the default parameter values: printValue("str", true, true, "!") // Prints: (str) By using named argument syntax, we can pass specific argument using argument name: printValue("str", suffix = "!") // Prints: (str)! We can also use named argument syntax together with classic call. The only restriction is when we start using named syntax we cannot use classic one for next arguments we are serving: printValue("str", true, "") printValue("str", true, prefix = "") printValue("str", inBracket = true, prefix = "") Summary In this article, we learned about single expression functions as a type of defining functions in application development. We also briefly explained Resources for Article:   Further resources on this subject: Getting started with Android Development [article] Android Game Development with Unity3D [article] Kotlin Basics [article]
Read more
  • 0
  • 0
  • 2268

article-image-react-native-really-native-framework
Packt
21 Feb 2018
11 min read
Save for later

Is React Native is really Native framework?

Packt
21 Feb 2018
11 min read
This article by Vladimir Novick, author of the book React Native - Building Mobile Apps with JavaScript, introduces the concept of how the the React Native is really a Native framework, it's working, information flow, architecture, and benefits. (For more resources related to this topic, see here.) Introduction So how React Native is different? Well it doesn’t fall under hybrid category because the approach is different. When hybrid apps are trying to make platform specific features reusable between platforms, React Native have platform independent features, but also have lots of specific platform implementations. Meaning that on iOS and on Android code will look different, but somewhere between 70-90 percent of code will be reused. Also React Native does not depend on HTML or CSS. You write in JavaScript, but this JavaScript is compiled to platform specific Native code using React Native bridge. It happens all the time, but it’s optimize to a way, that application will run smoothly in 60fps. So to summarize React Native is not really a Native framework, but It’s much closer to Native code, than hybrid apps. And now let’s dive a bit deeper and understand how JavaScript gets converted into a Native code. How React Native bridge from JavaScript to Native world works? Let’s dive a bit deeper and understand how React Native works under the hood, which will help us understand how JavaScript is compiled to a Native code and how the whole process works. It’s crucial to know how the whole process works, so if you will have performance issues one day, you will understand where it originates. Information flow So we’ve talked about React concepts that power up React Native and one of them is that UI is a function of data. You change the state and React knows what to update. Let’s visualize now how information flows through common React app. Check out the diagram:  We have React component, which passes data to three child components Under the hood what is happening is, Virtual DOM tree is created representing these component hierarchy When state of the parent component is updated, React knows how to pass information to the children Since children are basically representation of UI, React figures out how to batch Browser DOM updates and executes them So now let’s remove Browser DOM and think that instead of batching Browser DOM updates, React Native does the same with calls to Native modules. So what about passing information down to Native modules? It can be done in two ways: Shared mutable data Serializable messages exchanged between JavaScript and Native modules React Native is going with the second approach. Instead of mutating data on shareable objects it passes asynchronous serialized batched messages to React Native Bridge. Bridge is the layer that is responsible for glueing together Native and JavaScript environments. Architecture Let’s take a look at the following diagram, which explains how React Native Architecture is structured and walk through the diagram: In diagram, pictured three layers: Native, Bridge and JavaScript. Native layer is pictured at the last in picture, because the layer that is closer to device itself. Bridge is the layer that connects between JavaScript and Native modules and basically is a transport layer that transport asynchronous serialized batched response messages from JavaScript to Native modules. When event is executed on Native layer. It can be touch, timer, network request. Basically any event involving device Native modules, It’s data is collected and is sent to the Bridge as a serialized message. Bridge pass this message to JavaScript layer. JavaScript layer is an event loop. Once Bridge passes Serialized payload to JavaScript, Event is processed and your application logic comes into play. If you update state, triggering your UI to re-render for example, React Native will batch Update UI and send them to the Bridge. Bridge will pass this Serialized batched response to Native layer, which will process all commands, that it can distinguish from serialized batched response and will Update UI accordingly. Threading model Up till now we’ve seen that there are lots of stuff going on under the hood of React Native. It’s important to know that everything is done on three main threads: UI (application main thread) Native modules JavaScript Runtime UI thread is the main Native thread where Native level rendering occurs. It is here, where your platform of choice, iOS or Android, does measures, layouting, drawing. If your application accesses any Native APIs, it’s done on a separate Native modules thread. For example, if you want to access the camera, Geo location, photos, and any other Native API. Panning and gestures in general are also done on this thread. JavaScript Runtime thread is the thread where all your JavaScript code will run. It’s slower than UI thread since it’s based on JavaScript event loop, so if you do complex calculations in your application, that leads to lots of UI changes, these can lead to bad performance. The rule of thumb is that if your UI will change slower than 16.67ms, then UI will appear sluggish. What are benefits of React Native? React Native brings with it lots of advantages for mobile development. We covered some of them briefly before, but let’s go over now in more detail. These advantages are what made React Native so popular and trending nowadays. And most of all it give web developers to start developing Native apps with relatively short learning curve compared to overhead learning Objective-C and Java. Developer experience One of the amazing changes React Native brings to mobile development world is enhancing developer experience. If we check developer experience from the point of view of web developer, it’s awesome. For mobile developer it’s something that every mobile developer have dreamt of. Let’s go over some of the features React Native brings for us out of the box. Chrome DevTools debugging Every web developer is familiar with Chrome Developer tools. These tools give us amazing experience debugging web applications. In mobile development debugging mobile applications can be hard. Also it’s really dependent on your target platform. None of mobile application debugging techniques does not even come near web development experience. In React Native, we already know, that JavaScript event loop is running on a separate thread and it can be connected to Chrome DevTools. By clicking Ctrl/Cmd + D in application simulator, we can attach our JavaScript code to Chrome DevTools and bring web debugging to a mobile world. Let’s take a look at the following screenshot: Here you see a React Native debug tools. By clicking on Debug JS Remotely, a separate Google Chrome window is opened where you can debug your applications by setting breakpoints, profiling CPU and memory usage and much more. Elements tab in Chrome Developer tools won’t be relevant though. For that we have a different option. Let’s take a look at what we will get with Chrome Developer tools Remote debugger. Currently Chrome developer tools are focused on Sources tab. You can notice that JavaScript is written in ECMAScript 2015 syntax. For those of you who are not familiar with React JSX, you see weird XML like syntax. Don’t worry, this syntax will be also covered in the book in the context of React Native.  If you put debugger inside your JavaScript code, or a breakpoint in your Chrome development tools, the app will pause on this breakpoint or debugger and you will be able to debug your application while it’s running. Live reload As you can see in React Native debugging menu, the third row says Live Reload. If you enable this option, whenever you change your code and save, the application will be automatically reloaded. This ability to Live reload is something mobile developers only dreamt of. No need to recompile application after each minor code change. Just save and the application will reload itself in simulator. This greatly speed up application development and make it much more fun and easy than conventional mobile development. The workflow for every platform is different while in React Native the experience is the same. Does not matter for which platform you develop. Hot reload Sometimes you develop part of the application which requires several user interactions to get to. Think of, for example logging in, opening menu and choosing some option. When we change our code and save, while live reload is enabled, our application is reloaded and we need to once again do these steps. But it does not have to be like that. React Native gives us amazing experience of hot reloading. If you enable this option in React Native development tools and if you change your React Native component, only the component will be reloaded while you stay on the same screen you were before. This speeds up the development process even more. Component hierarchy inspections I’ve said before, that we cannot use elements panel in Chrome development tools, but how you inspect your component structure in React Native apps? React Native gives us built in option in development tools called Show Inspector. When clicking it, you will get the following window: After inspector is opened, you can select any component on the screen and inspect it. You will get the full hierarchy of your components as well as their styling: In this example I’ve selected Welcome to React Native! text. In the opened pane I can see it’s dimensions, padding margin as well as component hierarchy. As you can see it’s IntroApp/Text/RCTText. RCTText is not a React Native JavaScript component, but a Native text component, connected to React Native bridge. In that way you also can see that component is connected to a Native text component. There are even more dev tools available in React Native, that I will cover later on, but we all can agree, that development experience is outstanding. Web inspired layout techniques Styling for Native mobile apps can be really painful sometimes. Also it’s really different between iOS and Android. React Native brings another solution. As you may’ve seen before the whole concept of React Native is bringing web development experience to mobile app development. That’s also the case for creating layouts. Modern way of creating layout for the web is by using flexbox. React Native decided to adopt this modern technique for web and bring it also to the mobile world with small differences. In addition to layouting, all styling in React Native is very similar to using inline styles in HTML. Let’s take a look at example: const styles = StyleSheet.create({ container: { flex: 1, justifyContent: 'center', alignItems: 'center', backgroundColor: '#F5FCFF', }); As you can see in this example, there are several properties of flexbox used as well as background color. This really reminds CSS properties, however instead of using background-color, justify-content and align-items, CSS properties are named in a camel case manner. In order to apply these styles to text component for example. It’s enough to pass them as following: <Text styles={styles.container}>Welcome to React Native </Text> Styling will be discussed in the book, however as you can see from example before , styling techniques are similar to web. They are not dependant on any platform and the same for both iOS and Android Code reusability across applications In terms of code reuse, if an application is properly architectured (something we will also learn in this book), around 80% to 90% of code can be reused between iOS and Android. This means that in terms of development speed React Native beats mobile development. Sometimes even code used for the web can be reused in React Native environment with small changes. This really brings React Native to top of the list of the best frameworks to develop Native mobile apps. Summary In this article, we learned about the concept of how the React Native is really a Native framework, working, information flow, architecture, and it's benefits briefly. Resources for Article:   Further resources on this subject: Building Mobile Apps [article] Web Development with React and Bootstrap [article] Introduction to JavaScript [article]
Read more
  • 0
  • 1
  • 15001

article-image-how-convert-java-code-into-kotlin
Aanand Shekhar
14 Feb 2018
2 min read
Save for later

How to convert Java code into Kotlin

Aanand Shekhar
14 Feb 2018
2 min read
This Kotlin programming tutorial has been taken from Kotlin Programming Cookbook.  One of the best things about Kotlin is its interoperability with Java. If you're a Java programmer, that should be a reason to start learning alone. If you're using an IntelliJ-based IDE, it's actually incredibly easy to convert Java code to Kotlin. In this step-by-step recipe, you'll find out how to do it. What you need to convert your Java code to Kotlin All you need to follow this recipe is an IntelliJ-based IDE installed, which compiles and runs Kotlin and Java. How to do it... Here are the steps you need to follow to convert a Java file to a Kotlin file: In your IntelliJ IDE, open the Java file that you want to convert to Kotlin. Note that it has a .java extension. Now, in the main menu, click on Code menu and choose the Convert Java File to Kotlin File option. Your Java file will be converted into Kotlin, and the extension will now be .kt.  Here is an example of a Java file: After converting to Kotlin, this is what we have: A Kotlin file can be converted into Java, but it's better if you can avoid it or find an alternative way to do it. If you have to absolutely convert your Kotlin code to Java, click on Tools | Kotlin | Show Kotlin Bytecode in the menu: After clicking on Show Kotlin Bytecode, a window will open with the title Kotlin Bytecode: Click on Decompile and a .java file will be generated, containing a decompiled Java bytecode from Kotlin code: Yes, it has a lot of unnecessary code that was not present in the original Java code, but that is the case with decompiled bytecode. At the moment, this is the only way to convert Kotlin code to Java. Copy the decompiled file into a .java file and remove the unnecessary code. How it works Kotlin is a statically-typed programming language that works on Java Virtual Machine and compiles into JVM compatible bytecode. This is the reason we can convert Java code to Kotlin and mix Java and Kotlin code together.  This is also the reason why you can, in a way, get Java code back from Kotlin (although the output is not completely desired).
Read more
  • 0
  • 0
  • 5176
article-image-null-30
Packt
09 Feb 2018
13 min read
Save for later

Lets build applications for wear 2.0

Packt
09 Feb 2018
13 min read
In this article Ashok Kumar S, the author of the article Android Wear Projects will get you started on writing android wear applications. You probably already know that by the title of the article that we will be building wear applications, But you can also expect a little bit of story on every project and comprehensive explanation on the components and structure of the application. We will be covering most of the wear 2.0 standards and development practices in all the projects we are building. Why building wear applications? The culture of wearing a utility that helps to do certain actions have always been part of a modern civilization. Wrist watches for human beings have become an augmented helping tool for checking time and date. Wearing a watch lets you check time with just a glance. Technology has taken this wearing watch experience to next level, The first modern wearable watch was a combination of calculator and watch introduced to the world in 1970. Over the decades of advancement in microprocessors and wireless technology lead to introduce a concept called "ubiquitous computing". During this time most of the leading electronic industry, start-ups have started to work on their ideas which made wearable devices very popular. Going forward we will be building five projects enlisted below. Note taking application Fitness application Wear Maps application Chat messenger Watch face (For more resources related to this topic, see here.) This article will also introduce you to setting up your wear application development environment and the best practices for wear application development and new user interface components and we will also be exploring firebase technologies for chatting and notifications in one of the projects. Publishing wear application to play store will follow completely the similar procedure to mobile application publishing with a little change. Moving forward the article will help you to set your mind so resolutely with determined expectation towards accomplishing wear applications which are introduced in the article. If you are beginning to write the wear app for the first time or you have a fair bit of information on wear application development and struggling to how to get started, this article is going to be a lot of helpful resource for sure.   Note taking application There are numerous ways to take notes. You could carry a notebook and pen in your pocket, or scribble thoughts on a piece of paper. Or, better yet, you could use your Android Wear to take notes, so one can always have a way to store thoughts even if there's not a pen and note nearby. The Note Taking App provides convenient access to store and retrieve notes within Android Wear device. There are many Android smartphone notes taking app which is popular for their simplicity and elegant functionality. For the scope of a wear device, it is necessary to keep the design simple and glanceable. As a software developer we need to understand how important it is to target the different device sizes and reaching out for various types devices, To solve this android wearable support library has component called BoxInsetLayout. And having an animated feedback through DelayedConfirmationView is implemented to give the user a feedback on task completion. Thinking of a good wear application design, Google recommends using dark color to wear application for the best battery efficiency, Light color schemes used in typical material designed mobile applications are not energy efficient in wear devices. Light colors are less energy efficient in OLED display's. Light colors need to light up the pixels with brighter intensity, White colors need to light up the RGB diodes in your pixels at 100%, the more white and light color in application the less battery efficient application will be. Using custom font’s, In the world of digital design, making your application's visuals easy on users eyes is important. The Lora font from google collections has well-balanced contemporary serif with roots in calligraphy. It is a text typeface with moderate contrast well suited for body text. A paragraph set in Lora will make a memorable appearance because of its brushed curves in contrast with driving serifs. The overall typographic voice of Lora perfectly conveys the mood of a modern-day story, or an art essay. Technically Lora is optimized for screen appearance. We will also make the application to have list item animation so that users will love to use the application often. Fitness application We are living in the realm of technology! It is definitely not the highlight here, We are also living in the realm of intricate lifestyles that driving everyone's health into some sort of illness. Our existence leads us back to roots of the ocean, we all know that we are beings who have been evolved from water. If we trace back we clearly understand our body composition is made of sixty percent water and rest are muscled water. When we talk about taking care of our health we miss simple things, Considering taking care and self-nurturing us, should start from drinking sufficient water. Adequate regular water consumption will ensure great metabolism and healthy functional organs. New millennium's Advancement in technologies is an expression of how one can make use of technology for doing right things. Android wear integrates numerous sensors which can be used to help android wear users to measure their heart rate and step counts and etc. Having said that how about writing an application that reminds us to drink water every thirty minutes and measures our heart rate, step counts and few health tips. Material design will drive the mobile application development in vertical heights in this article we will be learning the wear navigation drawer and other material design components that makes the application stand out. The application will track the step counts through step counter sensor, application also has the ability to check the heart pulse rate with a animated heart beat projection, Application reminds user on hydrate alarms which in tern make the app user to drink the water often. In this article we will build a map application with a quick note taking ability on the layers of map. We humans travel to different cities, It could be domestic or international cities. How about having a track of places visited. We all use maps for different reasons but in most cases, we use maps to plan a particular activity like outdoor tours and cycling and other similar activities. Maps influence human's intelligence to find the fastest route from the source location to destination location.   Fetching the address from latitude and longitude using Geocoder class is comprehensively explained. The map applications needs to have certain visual attractions and that is carried out in this project and the story is explained comprehensively. Chatting application We could state that the belief system of Social media has been advanced and wiped out many difficulties of communication. Just about a couple of decades back, the communication medium was letters and a couple of centuries back trained birds and if we still look back we will definitely get few more stories to comprehend the way people use to communicate back those days. Now we are in the generation of IoT, wearable smart devices and era of smartphones where the communication happens across the planet in the fraction of a second. We will build a mobile and wear application that exhibits the power of google wear messaging API's to assist us in building the chat application. with a wear companion application to administer and respond to the messages being received. To help the process of chatting, the article introduces Firebase technologies for accomplishing the chatting application. We will build a wear and mobile app together and we will receive the message typed from wear device to mobile and update it to firebase. The article comprehensively explains the firebase real-time database and for notification purpose article introduces firebase functions as well. The application will have the user login page and list users to chat and chatting screen, The project is conceptualised in such a way that the article reader will be able to leverage all these techniques in his mastering skills and he can use the same ability in production applications. Data layer establishes the communication channel between two android nodes, And the article talks about the process in detail, in this project reader will be able to find whether the device has the google play services if not how to install or go forward to use the application. A brief explanation about capability API and some of the best use cases in chatting application context. Notification have always been the important component in the chatting application to know who texted them. In this article the reader will be able to understand the firebase functions for sending push notifications. Firebase functions offers triggers for all the firebase technologies and we will explore realtime database triggers from firebase functions. Reader will also learn how to work with input method framework and voice inpute in the wear device. After all the reader will be able to understand the essentials of writing a chat application with wear app companion. Watch Face A watch face, also known as the dial is part of the clock that displays the time through fixed numbers with moving hands. This expression of checking time can be designed with various artistic approaches and creativity. In this article reader will be able to start writing their own watch face. The article comprehensively explains the CanvaswatchFaceService with all the callbacks for constructing a digital watchface. The article also talks about registering watch face to the manifest similar to the wallpaperservice class. Keeping in mind that the watch face is going to be used in different form factors in wear device the watch face is written. The wear 2.0 offers watch face picker feature for setting up the watch face from the available list of watch faces. Reader will understand the watch face elements of Analog and digital watch faces. There are certain common issues when we talk about watch faces like how the watch face is going to get the data if at all it has any complications. Battery efficiency is one of the major concern while choose to write watch face. How well the network related operations is done in the watch face and what are the sensors if at all watch face is using how often the watch face have the access. Custom assets in watch face like complex SVG animations and graphical animations and how much CPU and GPU cycles is used, user’s like the more visual attractive watch faces rather than a simple analog and digital watch faces android wear 2.0 allows complications straight from the wear 2.0 SDK developers need not do the logical part of getting the data. The article also talks about Interactive watch face, the trend changes every time, In wear 2.0 the new interactive watch faces which can have unique interaction and style expression is a great update. And all watch face developers for wear might have to start thinking of interactive watch faces. The idea is to have the user to like and love watch face by giving them a delightful and useful information on a timely basis which changes the user experience of the watch face. Data integrated watch faces. Making watch face is an excellent artistic engineering, What data we should express in the watch face and how time data and date data is being displayed. More about wear 2.0 In this article reader will be able to seek the features that wear 2.0 offers and they will also be able to know wear 2.0 is the prominent update with the plenty of new features bundled, including google assistant, stand-alone applications, new watch faces and support for the third party complications. Wear 2.0 offers to give more with the happening market research and Google is working with partner companies to build the powerful ecosystem for wear. Stand-alone applications in wear is a brilliant feature which will create a lot of buzz in wear developers and wear users. Afterall who wants always to carry phone and who wants a paired devices to do some simple tasks. Stand-alone application is the powerful feature of the wear ecosystem. How cool it will be using wear apps without your phone nearby. There are various scenarios that wear devices use to be phone dependent, for example to receive new email notification wear needs to be connected to phone for the internet, Now wear device can independently connect to wifi and can sync all the apps for new updates. User can now complete more tasks with wear apps without a phone paired to it. The article explains how to identify whether the application is stand-alone or it is dependent on a companion app and installing stand-alone applications from google playstore and other wear 2.0 related new changes. Like Watch face complications and watch face picker. Brief understanding about the storage mechanism of the stand-alone wear applications. Wear device needs to talk with phone in many use cases and the article talks about the advertising the availability of and the article also talks about advertising the capabilities of the device and retrieving the capable nodes for the requested capability. If the wear app as a companion app we need to detect the companion app in the phone or in the wear device if neither the app installed we can guide the user to playstore to install the companion application. Wear 2.0 supports cloud messaging and cloud based push notifications and the article have the comprehensive explanation about the notifications. Android wear is evolving in every way, in wear 1.0 switching between screens use to be tedious and confusing to wear users. Now, google has introduced material design and interactive drawers. Which includes single and multipage navigation drawer and action drawer and more. Typing in the tiny little one and half inches screen is pretty challenging task to the wear users so wear 2.0 introduces input method framework quick types and swipes for entering the input in the wear device directly. This article is a resourceful journey to those who are planning to seek the wear development and wear 2.0 standards. Everything in the article projects a usual task that most of the developers trying to accomplish. Resources for Article:   Further resources on this subject: Getting started with Android Development [article] Building your first Android Wear Application [article] The Art of Android Development Using Android Studio [article]
Read more
  • 0
  • 0
  • 2892

article-image-introduction-hololens
Packt
11 Jul 2017
10 min read
Save for later

Introduction to HoloLens

Packt
11 Jul 2017
10 min read
In this article, Abhijit Jana, Manish Sharma, and Mallikarjuna Rao, the authors of the book, HoloLens Blueprints, we will be covering the following points to introduce you to using HoloLens for exploratory data analysis. Digital Reality - Under the Hood Holograms in reality Sketching the scenarios 3D Modeling workflow Adding Air Tap on speaker Real-time visualization through HoloLens (For more resources related to this topic, see here.) Digital Reality - Under the Hood Welcome to the world of Digital Reality. The purpose of Digital Reality is to bring immersive experiences, such as taking or transporting you to different world or places, make you interact within those immersive, mix digital experiences with reality, and ultimately open new horizons to make you more productive. Applications of Digital Reality are advancing day by day; some of them are in the field of gaming, education, defense, tourism, aerospace, corporate productivity, enterprise applications, and so on. The spectrum and scenarios of Digital Reality are huge. In order to understand them better, they are broken down into three different categories:  Virtual Reality (VR): It is where you are disconnected from the real world and experience the virtual world. Devices available on the market for VR are Oculus Rift, Google VR, and so on. VR is the common abbreviation of Virtual Reality. Augmented Reality (AR): It is where digital data is overlaid over the real world. Pokémon GO, one of the very famous games, is an example of the this globally. A device available on the market, which falls under this category, is Google Glass. Augmented Reality is abbreviated to AR. Mixed Reality (MR): It spreads across the boundary of the real environment and VR. Using MR, you can have a seamless and immersive integration of the virtual and the real world. Mixed Reality is abbreviated to MR. This topic is mainly focused on developing MR applications using Microsoft HoloLens devices. Although these technologies look similar in the way they are used, and sometimes the difference is confusing to understand, there is a very clear boundary that distinguishes these technologies from each other. As you can see in the following diagram, there is a very clear distinction between AR and VR. However, MR has a spectrum, that overlaps across all three boundaries of real world, AR, and MR. Digital Reality Spectrum The following table describes the differences between the three: Holograms in reality Till now, we have mentioned Hologram several times. It is evident that these are crucial for HoloLens and Holographic apps, but what is a Hologram? Virtual Reality Complete Virtual World User is completely isolated from the Real World Device examples: Oculus Rift and Google VR Augmented Reality Overlays Data over the real world Often used for mobile devices Device example: Google Glass Application example: Pokémon GO Mixed Reality Seamless integration of the real and virtual world Virtual world interacts with Real world Natural interactions Device examples: HoloLens and Meta Holograms are the virtual objects which will be made up with light and sound and blend with the real world to give us an immersive MR experience with both real and virtual worlds. In other words, a Hologram is an object like any other real-world object; the only difference is that it is made up of light rather than matter. The technology behind making holograms is known as Holography. The following figure represent two holographic objects placed on the top of a real-size table and gives the experience of placing a real object on a real surface: Holograms objects in real environment Interacting with holograms There are basically five ways that you can interact with holograms and HoloLens. Using your Gaze, Gesture, and Voice and with spatial audio and spatial mapping. Spatial mapping provides a detailed illustration of the real-world surfaces in the environment around HoloLens. This allows developers to understand the digitalized real environments and mix holograms into the world around you. Gaze is the most usual and common one, and we start the interaction with it. At any time, HoloLens would know what you are looking at using Gaze. Based on that, the device can take further decisions on the gesture and voice that should be targeted. Spatial audio is the sound coming out from HoloLens and we use spatial audio to inflate the MR experience beyond the visual. HoloLens Interaction Model Sketching the scenarios The next step after elaborating scenario details is to come up with sketches for this scenario. There is a twofold purpose for sketching; first, it will be input to the next phase of asset development for the 3D Artist, as well as helping to validate requirements from the customer, so there are no surprises at the time of delivery. For sketching, either the designer can take it up on their own and build sketches, or they can take help from the 3D Artist. Let's start with the sketch for the primary view of the scenario, where the user is viewing the HoloLens's hologram: Roam around the hologram to view it from different angles Gaze at different interactive components Sketch for user viewing hologram for the HoloLens Sketching - interaction with speakers While viewing the hologram, a user can gaze at different interactive components. One such component, identified earlier, is the speaker. At the time of gazing at the speaker, it should be highlighted and the user can then Air Tap at it. The Air Tap action should expand the speaker hologram and the user should be able to view the speaker component in detail. Sketch for expanded speakers After the speakers are expanded, the user should be able to visualize the speaker components in detail. Now, if the user Air Taps on the expanded speakers, the application should do the following: Open the textual detail component about the speakers; the user can read the content and learn about the speakers in detail Start voice narration, detailing speaker details The user can also Air Tap on the expanded speaker component, and this action should close the expanded speaker Textual and voice narration for speaker details  As you did sketching for the speakers, apply a similar approach and do sketching for other components, such as lenses, buttons, and so on. 3D Modeling workflow Before jumping to 3D Modeling, let's understand the 3D Modeling workflow across different tools that we are going to use during the course of this topic. The following diagram explains the flow of the 3D Modeling workflow: Flow of 3D Modeling workflow Adding Air Tap on speaker In this project, we will be using the left-side speaker for applying Air Tap on speaker. However, you can apply the same for the right-side speaker as well. Similar to Lenses, we have two objects here which we need to identify from the object explorer. Navigate to Left_speaker_geo and left_speaker_details_geo in Object Hierarchy window Tag them as leftspeaker and speakerDetails respectively By default, when you are just viewing the Holograms, we will be hiding the speaker details section. This section only becomes visible when we do the Air Tap, and goes back again when we Air Tap again: Speaker with Box Collider Add a new script inside the Scripts folder, and name it ShowHideBehaviour. This script will handle the Show and Hide behaviour of the speakerDetails game object. Use the following script inside the ShowHideBehaviour.cs file. This script we can use for any other object to show or hide. public class ShowHideBehaviour : MonoBehaviour { public GameObject showHideObject; public bool showhide = false; private void Start() { try { MeshRenderer render = showHideObject.GetComponent InChildren<MeshRenderer>(); if (render != null) { render.enabled = showhide; } } catch (System.Exception) { } } } The script finds the MeshRenderer component from the gameObject and enables or disables it based on the showhide property. In this script, the showhide is property exposed as public, so that you can provide the reference of the object from the Unity scene itself. Attach ShowHideBehaviour.cs as components in speakerDetails tagged object. Then drag and drop the object in the showhide property section. This just takes the reference for the current speaker details objects and will hide the object in the first instance. Attach show-hide script to the object By default, it is unchecked, showhide is set to false and it will be hidden from view. At this point in time, you must check the left_speaker_details_geo on, as we are now handling visibility using code. Now, during the Air Tapped event handler, we can handle the render object to enable visibility. Add a new script by navigating from the context menu Create | C# Scripts, and name it SpeakerGestureHandler. Open the script file in Visual Studio. Similar to SpeakerGestureHandler, by default, the SpeakerGestureHandler class will be inherited from the MonoBehaviour. In the next step, implement the InputClickHandler interface in the SpeakerGestureHandler class. This interface implement the methods OnInputClicked() that invoke on click input. So, whenever you do an Air Tap gesture, this method is invoked. RaycastHit hit; bool isTapped = false; public void OnInputClicked(InputEventData eventData) { hit = GazeManager.Instance.HitInfo; if (hit.transform.gameObject != null) { isTapped = !isTapped; var lftSpeaker = GameObject.FindWithTag("LeftSpeaker"); var lftSpeakerDetails = GameObject.FindWithTag("speakerDetails"); MeshRenderer render = lftSpeakerDetails.GetComponentInChildren <MeshRenderer>(); if (isTapped) { lftSpeaker.transform.Translate(0.0f, -1.0f * Time.deltaTime, 0.0f); render.enabled = true; } else { lftSpeaker.transform.Translate(0.0f, 1.0f * Time.deltaTime, 0.0f); render.enabled = false; } } } When it is gazed, we find the game object for both LeftSpeaker and speakerDetails by the tag name. For the LeftSpeaker object, we are applying transformation based on tapped or not tapped, which worked like what we did for lenses. In the case of speaker details object, we have also taken the reference of MeshRenderer to make it's visibility true and false based on the Air Tap. Attach the SpeakerGestureHandler class with leftSpeaker Game Object. Air Tap in speaker – see it in action Air Tap action for speaker is also done. Save the scene, build and run the solution in emulator once again. When you can see the cursor on the speaker, perform Air Tap. Default View and Air Tapped View Real-time visualization through HoloLens We have learned about the data ingress flow, where devices connect with the IoT Hub, and stream analytics processes the stream of data and pushes it to storage. Now, in this section, let's discuss how this stored data will be consumed for data visualization within holographic application. Solution to consume data through services Summary In this article, we demonstrated using HoloLens,  for exploring Digital Reality - Under the Hood, Holograms in reality, Sketching the scenarios, 3D Modeling workflow, Adding Air Tap on speaker,  and  Real-time visualization through HoloLens. Resources for Article: Further resources on this subject: Creating Controllers with Blueprints [article] Raspberry Pi LED Blueprints [article] Exploring and Interacting with Materials using Blueprints [article]
Read more
  • 0
  • 0
  • 3334