Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Julia for Data Science

You're reading from   Julia for Data Science high-performance computing simplified

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785289699
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Anshul Joshi Anshul Joshi
Author Profile Icon Anshul Joshi
Anshul Joshi
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. The Groundwork – Julia's Environment 2. Data Munging FREE CHAPTER 3. Data Exploration 4. Deep Dive into Inferential Statistics 5. Making Sense of Data Using Visualization 6. Supervised Machine Learning 7. Unsupervised Machine Learning 8. Creating Ensemble Models 9. Time Series 10. Collaborative Filtering and Recommendation System 11. Introduction to Deep Learning

Understanding the normal distribution


The normal distribution is the core of inferential statistics. It is like a bell curve (also called a Gaussian curve). Most of the complex processes can be defined by the normal distribution.

Let's see what a normal distribution looks like. First, we will import the necessary packages. We are including RDatasets now, but will be using it later:

We first set the seed and then explore the normal function:

As per the warning given, we can also use fieldnames instead of names. It is recommended to use fieldnames only from the newer versions of Julia.

Here, we can see that the Normal function is in the Distributions package and has the features Univariate and Continuous. The constructor of the normal() function accepts two parameters:

  • Mean (μ)

  • Standard deviation (σ)

Let's instantiate a normal distribution. We will keep the mean (μ) as 1.0 and the standard deviation (σ) as 3.0:

We can check the mean and standard deviation that we have kept:

Using this normal...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image