Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Julia for Data Science

You're reading from   Julia for Data Science high-performance computing simplified

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785289699
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Anshul Joshi Anshul Joshi
Author Profile Icon Anshul Joshi
Anshul Joshi
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. The Groundwork – Julia's Environment 2. Data Munging FREE CHAPTER 3. Data Exploration 4. Deep Dive into Inferential Statistics 5. Making Sense of Data Using Visualization 6. Supervised Machine Learning 7. Unsupervised Machine Learning 8. Creating Ensemble Models 9. Time Series 10. Collaborative Filtering and Recommendation System 11. Introduction to Deep Learning

Understanding matrixvariate distributions


This is a distribution from which any sample drawn is of type matrix. Many of the methods that can be used with Univariate and Multivariate distributions can be used with Matrix-variate distributions.

Wishart distribution

This is a type of matrix-variate distribution and is a generalization of the Chi-square distribution to two or more variables. It is constructed by adding the inner products of identically distributed, independent, and zero-mean multivariate normal random vectors. It is used as a model for the distribution of the sample covariance matrix for multivariate normal random data, after scaling by the sample size:

julia> Wishart(v, S) 

Here, v refers to the degrees of freedom and S is the base matrix.

Inverse-Wishart distribution

This is the conjugate prior to the covariance matrix of a multivariate normal distribution. In Julia, it is implemented as follows:

julia> InverseWishart(v, P) 

This represents an Inverse-Wishart...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image