Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Generative AI with LangChain

You're reading from   Generative AI with LangChain Build large language model (LLM) apps with Python, ChatGPT, and other LLMs

Arrow left icon
Product type Paperback
Published in Dec 2023
Publisher Packt
ISBN-13 9781835083468
Length 368 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Ben Auffarth Ben Auffarth
Author Profile Icon Ben Auffarth
Ben Auffarth
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. What Is Generative AI? FREE CHAPTER 2. LangChain for LLM Apps 3. Getting Started with LangChain 4. Building Capable Assistants 5. Building a Chatbot Like ChatGPT 6. Developing Software with Generative AI 7. LLMs for Data Science 8. Customizing LLMs and Their Output 9. Generative AI in Production 10. The Future of Generative Models 11. Other Books You May Enjoy
12. Index

Customizing LLMs and Their Output

This chapter is about techniques and best practices to improve the reliability and performance of LLMs in certain scenarios, such as complex reasoning and problem-solving tasks. This process of adapting a model for a certain task or making sure that our model output corresponds to what we expect is called conditioning. In this chapter, we’ll discuss fine-tuning and prompting as methods for conditioning.

Fine-tuning involves training the pre-trained base model on specific tasks or datasets relevant to the desired application. This process allows the model to adapt, becoming more accurate and contextually relevant for the intended use case.

On the other hand, by providing additional input or context at inference time, LLMs can generate text tailored to a particular task or style. Prompt engineering is significant in unlocking LLM reasoning capabilities, and prompt techniques form a valuable toolkit for researchers and practitioners working...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime