Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Object-Oriented Programming

You're reading from   Python Object-Oriented Programming Build robust and maintainable object-oriented Python applications and libraries

Arrow left icon
Product type Paperback
Published in Jul 2021
Publisher Packt
ISBN-13 9781801077262
Length 714 pages
Edition 4th Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dusty Phillips Dusty Phillips
Author Profile Icon Dusty Phillips
Dusty Phillips
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Object-Oriented Design 2. Objects in Python FREE CHAPTER 3. When Objects Are Alike 4. Expecting the Unexpected 5. When to Use Object-Oriented Programming 6. Abstract Base Classes and Operator Overloading 7. Python Data Structures 8. The Intersection of Object-Oriented and Functional Programming 9. Strings, Serialization, and File Paths 10. The Iterator Pattern 11. Common Design Patterns 12. Advanced Design Patterns 13. Testing Object-Oriented Programs 14. Concurrency 15. Other Books You May Enjoy
16. Index

Who can access my data?

Most object-oriented programming languages have a concept of access control. This is related to abstraction. Some attributes and methods on an object are marked private, meaning only that object can access them. Others are marked protected, meaning only that class and any subclasses have access. The rest are public, meaning any other object is allowed to access them.

Python doesn't do this. Python doesn't really believe in enforcing laws that might someday get in your way. Instead, it provides unenforced guidelines and best practices. Technically, all methods and attributes on a class are publicly available. If we want to suggest that a method should not be used publicly, we can put a note in docstrings indicating that the method is meant for internal use only (preferably, with an explanation of how the public-facing API works!).

We often remind each other of this by saying "We're all adults here." There's no need to declare a variable as private when we can all see the source code.

By convention, we generally prefix an internal attribute or method with an underscore character, _. Python programmers will understand a leading underscore name to mean this is an internal variable, think three times before accessing it directly. But there is nothing inside the interpreter to stop them from accessing it if they think it is in their best interest to do so. Because, if they think so, why should we stop them? We may not have any idea what future uses our classes might be put to, and it may be removed in a future release. It's a pretty clear warning sign to avoid using it.

There's another thing you can do to strongly suggest that outside objects don't access a property or method: prefix it with a double underscore, __. This will perform name mangling on the attribute in question. In essence, name mangling means that the method can still be called by outside objects if they really want to do so, but it requires extra work and is a strong indicator that you demand that your attribute remains private.

When we use a double underscore, the property is prefixed with _<classname>. When methods in the class internally access the variable, they are automatically unmangled. When external classes wish to access it, they have to do the name mangling themselves. So, name mangling does not guarantee privacy; it only strongly recommends it. This is very rarely used, and often a source of confusion when it is used.

Don't create new double-underscore names in your own code, it will only cause grief and heartache. Consider this reserved for Python's internally defined special names.

What's important is that encapsulation – as a design principle – assures that the methods of a class encapsulate the state changes for the attributes. Whether or not attributes (or methods) are private doesn't change the essential good design that flows from encapsulation.

The encapsulation principle applies to individual classes as well as a module with a bunch of classes. It also applies to a package with a bunch of modules. As designers of object-oriented Python, we're isolating responsibilities and clearly encapsulating features.

And, of course, we're using Python to solve problems. It turns out there's a huge standard library available to help us create useful software. The vast standard library is why we describe Python as a "batteries included" language. Right out of the box, you have almost everything you need, no running to the store to buy batteries.

Outside the standard library, there's an even larger universe of third-party packages. In the next section, we'll look at how we extend our Python installation with even more ready-made goodness.

You have been reading a chapter from
Python Object-Oriented Programming - Fourth Edition
Published in: Jul 2021
Publisher: Packt
ISBN-13: 9781801077262
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image