Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering PyTorch

You're reading from   Mastering PyTorch Create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781801074308
Length 558 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Ashish Ranjan Jha Ashish Ranjan Jha
Author Profile Icon Ashish Ranjan Jha
Ashish Ranjan Jha
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Overview of Deep Learning Using PyTorch 2. Deep CNN Architectures FREE CHAPTER 3. Combining CNNs and LSTMs 4. Deep Recurrent Model Architectures 5. Advanced Hybrid Models 6. Graph Neural Networks 7. Music and Text Generation with PyTorch 8. Neural Style Transfer 9. Deep Convolutional GANs 10. Image Generation Using Diffusion 11. Deep Reinforcement Learning 12. Model Training Optimizations 13. Operationalizing PyTorch Models into Production 14. PyTorch on Mobile Devices 15. Rapid Prototyping with PyTorch 16. PyTorch and AutoML 17. PyTorch and Explainable AI 18. Recommendation Systems with PyTorch 19. PyTorch and Hugging Face 20. Index

References

  1. ImageNet dataset: https://image-net.org/
  2. CIFAR-10 dataset: https://www.cs.toronto.edu/~kriz/cifar.html
  3. PyTorch vision models: https://pytorch.org/vision/stable/models.html
  4. Mastering PyTorch GitHub notebook link to fine-tune AlexNet: https://github.com/arj7192/MasteringPyTorchV2/blob/main/Chapter02/transfer_learning_alexnet.ipynb
  5. Hymenoptera dataset (Kaggle link): https://www.kaggle.com/datasets/ajayrana/hymenoptera-data
  6. Hymenoptera Genome Database: https://hymenoptera.elsiklab.missouri.edu/
  7. Mastering PyTorch GitHub notebook link to run VGG model inference: https://github.com/arj7192/MasteringPyTorchV2/blob/main/Chapter02/vgg13_pretrained_run_inference.ipynb
  8. ImageNet class IDs to labels: https://gist.github.com/yrevar/942d3a0ac09ec9e5eb3a
  9. PyTorch MobileNetV2: https://pytorch.org/hub/pytorch_vision_mobilenet_v2/
  10. Capsule neural network: https://en.wikipedia.org/wiki/Capsule_neural_network
  11. Region-based convolutional neural networks: https://en.wikipedia.org/wiki/Region_Based_Convolutional_Neural_Networks
  12. Object detection, instance segmentation, and person keypoint detection TorchVision models: https://pytorch.org/vision/stable/models.html#object-detection-instance-segmentation-and-person-keypoint-detection

Learn more on Discord

Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/mastorch

You have been reading a chapter from
Mastering PyTorch - Second Edition
Published in: May 2024
Publisher: Packt
ISBN-13: 9781801074308
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime