Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon

Principles for Fine-tuning LLMs

Save for later
  • 8 min read
  • 22 Jun 2023

article-image

Language Models (LMs) have transformed the field of natural language processing (NLP), exhibiting impressive language understanding and generation capabilities. Pre-trained Large Language Models (LLMs) trained on large corpora have become the backbone of various NLP applications. However, to fully unlock their potential, these models often require additional fine-tuning to adapt them to specific tasks or domains.

In this article, we demystify the dark art of fine-tuning LLMs and explore the advancements in techniques such as in-context learning, classic fine-tuning methods, parameter-efficient fine-tuning, and Reinforcement Learning with Human Feedback (RLHF). These approaches provide novel ways to enhance LLMs' performance, reduce computational requirements, and enable better adaptation to diverse applications. 

Do you even need fine-tuning? 

Fine-tuning generally involves updating the weights of a neural network to improve its performance on a given task. With the advent of large language models, researchers have discovered that LLMs are capable of performing tasks that they were not explicitly trained to do (for example, language translation). In other words, LLMs can be used to perform specific tasks without any need for fine-tuning at all.

In-Context Learning

In-context learning allows users to influence an LLM to perform a specific task by providing a few input-output examples in the prompt. As an example, such a prompt may be written as follows:

"Translate the following sentences from English to French:
English: <English Sentence 1>
French: <French Sentence 1>
English: <English Sentence 2>
French: <French Sentence 2> 
English: <English Sentence 3>
French: <French Sentence 3> 
English: <English Sentence You Want To Translate>
French:"

 The LLM is able to pick up on the "pattern" and continue by completing the French translation.

 Classic Fine-Tuning Approaches

"Classic" fine-tuning methods are widely used in the field of natural language processing (NLP) to adapt pre-trained language models for specific tasks. These methods include feature-based fine-tuning and full fine-tuning, each with its own advantages and considerations. I use the term "classic" in quotes because this is a fast-moving field, so what is old and what is new is relative. These approaches were only developed and widely utilized within the past decade.

 Feature-based fine-tuning involves keeping the body of the neural network frozen while updating only the task-specific layers or additional classification layers attached to the pre-trained model. By freezing the lower layers of the network, which capture general linguistic features and representations, feature-based fine-tuning aims to preserve the knowledge learned during pre-training while allowing for task-specific adjustments.

 This approach is fast, especially when the features (a.k.a. "embeddings") are precomputed for each input and then re-used later, without the need to go through the full neural network on each pass.

 This approach is particularly useful when the target task has limited training data. By leveraging the pre-trained model's generalization capabilities, feature-based fine-tuning can effectively transfer the knowledge captured by the lower layers to the task-specific layers. This method reduces the risk of overfitting on limited data and provides a practical solution for adapting language models to new tasks. On the other hand, full fine-tuning involves updating all parameters of the neural network, including both the lower layers responsible for general linguistic knowledge and the task-specific layers.

 Full fine-tuning allows the model to learn task-specific patterns and nuances by making adjustments to all parts of the network. It provides more flexibility in capturing specific task-related information and has been shown to lead to better performance. The choice between feature-based fine-tuning and full fine-tuning depends on the specific requirements of the target task, the availability of training data, and the computational resources. Feature-based fine-tuning is a practical choice when dealing with limited data and a desire to leverage pre-trained representations, while full fine-tuning is beneficial for tasks with more data and distinct characteristics that warrant broader updates to the model's parameters.

 Both approaches have their merits and trade-offs, and the decision on which fine-tuning method to employ should be based on a careful analysis of the task requirements, available resources, and the desired balance between transfer learning and task-specific adaptation. In my course, Data Science: Transformers for Natural Language Processing, we go into detail about how everyday users like yourself can fine-tune LLMs on modest hardware.

Modern Approaches: Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning is a set of techniques that aim to optimize the performance of language models while minimizing the computational resources and time required for fine-tuning. Traditional fine-tuning approaches involve updating all parameters of the pre-trained model, which can be computationally expensive and impractical for large-scale models. Parameter-efficient fine-tuning strategies focus on identifying and updating only a small number of parameters. One popular technique for parameter-efficient fine-tuning is Low-Rank Adaptation (LoRA). Lora is a technique designed to improve the efficiency and scalability of large language models for various downstream tasks. It addresses the challenges of high computational costs and memory requirements associated with full fine-tuning.

Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at €18.99/month. Cancel anytime

 LoRA leverages low-rank matrices to reduce the number of trainable parameters while maintaining model performance. By freezing a shared pre-trained model and replacing specific matrices, LoRA enables efficient task-switching and significantly reduces storage requirements. This approach also lowers the hardware barrier to entry by up to 3 times when using adaptive optimizers. One of the key advantages of LoRA is its simplicity, allowing for seamless integration with other methods such as prefix-tuning. Additionally, LoRA's linear design enables the merging of trainable matrices with frozen weights during deployment, resulting in no inference latency compared to fully fine-tuned models.

 Empirical investigations have shown that LoRA outperforms prior approaches, including full fine-tuning, in terms of scalability, task performance, and model quality. Overall, LoRA offers a promising solution for the efficient and effective adaptation of large language models, making them more accessible and practical for a wide range of applications.

Reinforcement Learning with Human Feedback (RLHF)

Reinforcement Learning (RL) is a branch of machine learning that involves training agents to make decisions in an environment to maximize cumulative rewards. Traditionally, RL relies on trial-and-error interactions with the environment to learn optimal policies. However, this process can be time-consuming, especially in complex environments. RLHF aims to accelerate this learning process by incorporating human feedback, reducing the exploration time required.

The combination of RL with Human Feedback involves a two-step process. First, an initial model is trained using supervised learning, with human experts providing annotated data or demonstrations. This process helps the model grasp the basics of the task. In the second step, RL takes over, using the initial model as a starting point and iteratively improving it through interactions with the environment and human evaluators.

 RLHF was an important step in fine-tuning today's most popular OpenAI models, including ChatGPT and GPT-4. 

Fine-tuning LLMs with RLHF

Applying RLHF to fine-tune Language Models (LLMs) involves using human feedback to guide the RL process. The initial LLM is pre-trained on a large corpus of text to learn general language patterns. However, pre-training alone might not capture domain-specific nuances or fully align with a specific task's requirements. RLHF comes into play by using human feedback to refine the LLM's behavior and optimize it for specific tasks.

 Human feedback can be obtained in various ways, such as comparison-based ranking. In the comparison-based ranking, evaluators rank different model responses based on their quality. The RL algorithm then uses these rankings to update the model's parameters and improve its performance.

Benefits of RLHF for LLM Fine-tuning

 Enhanced Performance: RLHF enables LLMs to learn from human expertise and domain-specific knowledge, leading to improved performance on specific tasks. The iterative nature of RLHF allows the model to adapt and refine its behavior based on evaluators' feedback, resulting in more accurate and contextually appropriate responses.

Mitigating Bias and Safety Concerns: Human feedback in RLHF allows for the incorporation of ethical considerations and bias mitigation. Evaluators can guide the model toward generating unbiased and fair responses, helping to address concerns related to misinformation, hate speech, or other sensitive content.

Summary

In summary, the article explores various approaches to fine-tuning Language Models (LLMs). It delves into classical and modern approaches, highlighting their strengths and limitations in optimizing LLM performance. Additionally, the article provides a detailed examination of the reinforcement learning with the human feedback approach, emphasizing its potential for enhancing LLMs by incorporating human knowledge and expertise. By understanding the different approaches to fine-tuning LLMs, researchers, and practitioners can make informed decisions when selecting the most suitable method for their specific applications and objectives.

Author Bio

The Lazy Programmer is an AI/ML engineer focusing on deep learning with experience in data science, big data engineering, and full-stack development. With a background in computer engineering and specialization in ML, he holds two master’s degrees in computer engineering and statistics with finance applications. His online advertising and digital media expertise include data science and big data.

He has created DL models for prediction and has experience in recommender systems using reinforcement learning and collaborative filtering. He is a skilled instructor who has taught at universities including Columbia, NYU, Hunter College, and The New School. He is a web programmer with experience in Python, Ruby/Rails, PHP, and Angular.