Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with PyTorch and Scikit-Learn

You're reading from   Machine Learning with PyTorch and Scikit-Learn Develop machine learning and deep learning models with Python

Arrow left icon
Product type Paperback
Published in Feb 2022
Publisher Packt
ISBN-13 9781801819312
Length 774 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data FREE CHAPTER 2. Training Simple Machine Learning Algorithms for Classification 3. A Tour of Machine Learning Classifiers Using Scikit-Learn 4. Building Good Training Datasets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Predicting Continuous Target Variables with Regression Analysis 10. Working with Unlabeled Data – Clustering Analysis 11. Implementing a Multilayer Artificial Neural Network from Scratch 12. Parallelizing Neural Network Training with PyTorch 13. Going Deeper – The Mechanics of PyTorch 14. Classifying Images with Deep Convolutional Neural Networks 15. Modeling Sequential Data Using Recurrent Neural Networks 16. Transformers – Improving Natural Language Processing with Attention Mechanisms 17. Generative Adversarial Networks for Synthesizing New Data 18. Graph Neural Networks for Capturing Dependencies in Graph Structured Data 19. Reinforcement Learning for Decision Making in Complex Environments 20. Other Books You May Enjoy
21. Index

About convergence in neural networks

You might be wondering why we did not use regular gradient descent but instead used mini-batch learning to train our NN for the handwritten digit classification earlier. You may recall our discussion on SGD that we used to implement online learning. In online learning, we compute the gradient based on a single training example (k = 1) at a time to perform the weight update. Although this is a stochastic approach, it often leads to very accurate solutions with a much faster convergence than regular gradient descent. Mini-batch learning is a special form of SGD where we compute the gradient based on a subset k of the n training examples with 1 < k < n. Mini-batch learning has an advantage over online learning in that we can make use of our vectorized implementations to improve computational efficiency. However, we can update the weights much faster than in regular gradient descent. Intuitively, you can think of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image