Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds

How-To Tutorials - IoT and Hardware

152 Articles
article-image-code-real-world
Packt
02 Sep 2015
22 min read
Save for later

From Code to the Real World

Packt
02 Sep 2015
22 min read
 In this article by Jorge R. Castro, author of Building a Home Security System with Arduino, you will learn to read a technical specification sheet, the ports on the Uno and how they work, the necessary elements for a proof of concept. Finally, we will extend the capabilities of our script in Python and rely on NFC technology. We will cover the following points: ProtoBoards and wiring Signals (digital and analog) Ports Datasheets (For more resources related to this topic, see here.) ProtoBoards and wiring There are many ways of working on and testing electrical components, one of the ways developers use is using ProtoBoards (also known as breadboards). Breadboards help eliminate the need to use soldering while testing out components and prototype circuit schematics, it lets us reuse components, enables rapid development, and allows us to correct mistakes and even improve the circuit design. It is a rectangle case composed of internally interconnected rows and columns; it is possible to couple several together. The holes on the face of the board are designed to in way that you can insert the pins of components to mount it. ProtoBoards may be the intermediate step before making our final PCB design, helping eliminate errors and reduce the associated cost. For more information visit http://en.wikipedia.org/wiki/Breadboard. We know have to know more about the wrong wiring techniques when using a breadboard. There are rules that have always been respected, and if not followed, it might lead to shorting out elements that can irreversibly damage our circuit.   A ProtoBoard and an Arduino Uno The ProtoBoard is shown in the preceding image; we can see there are mainly two areas - the vertical columns (lines that begin with the + and - polarity sign), and the central rows (with a coordinate system of letters and numbers). Both + and - usually connect to the electrical supply of our circuit and to the ground. It is advised not to connect components directly in the vertical columns, instead to use a wire to connect to the central rows of the breadboard. The central row number corresponds to a unique track. If we connected one of the leads of a resistor in the first pin of the first row then other lead should be connected to any other pin in another row, and not in the same row. There is an imaginary axis that divides the breadboard vertically in symmetrical halves, which implies that they are electrically independent. We will use this feature to use certain Integrated Circuits (IC), and they will be mounted astride the division.   Protoboard image obtained using Fritzing. Carefully note that in the preceding picture, the top half of the breadboard shows the components mounted incorrectly, while the lower half shows the components mounted the correct way. A chip is set correctly between the two areas, this usage is common for IC's. Fritzing is a tool that helps us create a quick circuit design of our project. Visit http://fritzing.org/download/ for more details on Fritzing. Analog and digital ports Now that we know about the correct usage of a breadboard, we now have another very important concept - ports. Our board will be composed of various inputs and outputs, the number of which varies with the kind of model we have. But what are ports? The Arduino UNO board has ports on its sides. They are connections that allow it to interact with sensors, actuators, and other devices (even with another Arduino board). The board also has ports that support digital and analog signals. The advantage is that these ports are bidirectional, and the programmers are able to define the behavior of these ports. In the following code, the first part shows that we set the status of the ports that we are going to use. This is the setup function: //CODE void setup(){ // Will run once, and use it to // "prepare" I/0 pins of Arduino pinMode(10, OUTPUT); // put the pin 10 as an output pinMode(11, INPUT); // put the pin 11 as an input } Lets take a look at what the digital and analog ports are on the Arduino UNO. Analog ports Analog signals are signals that continuously vary with time These can be explained as voltages that have continuously varying intermediate values. For example, it may vary from 2V to 3.3V to 3.0V, or 3.333V, which means that the voltages varied progressively with time, and are all different values from each other; the figures between the two values are infinite (theoretical value). This is an interesting property, and that is what we want. For example, if we want to measure the temperature of a room, the temperature measure takes values with decimals, need an analog signal. Otherwise, we will lose data, for example, in decimal values since we are not able to store infinite decimal numbers we perform a mathematical rounding (truncating the number). There is a process called discretization, and it is used to convert analog signals to digital. In reality, in the world of microcontrollers, the difference between two values is not infinite. The Arduino UNO's ports have a range of values between 0 and 1023 to describe an analog input signal. Certain ports, marked as PWM or by a ~, can create output signals that vary between values 0 and 255. Digital ports A digital signal consists of just two values - 0s and 1s. Many electronic devices internally have a range currently established, where voltage values from 3.5 to 5V are considered as a logic 1, and voltages from 0 to 2.5V are considered as a logic 0. To better understand this point, let's see an example of a button that triggers an alarm. The only useful cases for an alarm are when the button is pressed to ring the alarm and when it's not pressed; there are only two states observed. So unlike the case of the temperature sensor, where we can have a range of linear values, here only two values exist. Logically, we use these properties for different purposes. The Arduino IDE has some very illustrative examples. You can load them onto your board to study the concepts of analog and digital signals by navigating to File | Examples | Basic | Blink. Sensors There is a wide range of sensors, and without pretending to be an accurate guide of all possible sensors, we will try to establish some small differences. All physical properties or sets of them has an associated sensor, so we can measure the force (presence of people walking on the floor), movement (physical displacement even in the absence of light), smoke, gas, pictures (yes, the cameras also are sensors) noise (sound recording), antennas (radio waves, WiFi, and NFC), and an incredible list that would need a whole book to explain all its fantastic properties. It is also interesting to note that the sensors can also be specific and concrete; however, they only measure very accurate or nonspecific properties, being able to perceive a set of values but more accurately. If you go to an electronics store or a sales portal buy a humidity sensor (and generally any other electronic item), you will see a sensitive price range. In general, expensive sensors indicate that they are more reliable than their cheaper counterparts, the price also indicates the kinds of conditions that it can work in, and also the duration of operation. Expensive sensors can last more than the cheaper variants. When we started looking for a component, we looked to the datasheets of a particular component (the next point will explain what this document is), you will not be surprised to find two very similar models mentioned in the datasheets. It contains operating characteristics and different prices. Some components are professionally deployed (for instance in the technological and military sectors), while others are designed for general consumer electronics. Here, we will focus on those with average quality and foremost an economic price. We proceed with an example that will serve as a liaison with the following paragraph. To do this, we will use a temperature sensor (TMP-36) and an analog port on the Arduino UNO. The following image shows the circuit schematic:   Our design - designed using Fritzing The following is the code for the preceding circuit schematic: //CODE //########################### //Author : Jorge Reyes Castro //Arduino Home Security Book //########################### // A3 <- Input // Sensor TMP36 //########################### //Global Variable int outPut = 0; float outPutToVol = 0.0; float volToTemp = 0.0; void setup(){ Serial.begin(9600); // Start the SerialPort 9600 bauds } void loop(){ outPut = analogRead(A3); // Take the value from the A3 incoming port outPutToVol = 5.0 *(outPut/1024.0); // This is calculated with the values volToTemp = 100.0 *(outPutToVol - 0.5); // obtained from the datasheet Serial.print("_____________________n"); mprint("Output of the sensor ->", outPut); mprint("Conversion to voltage ->", outPutToVol); mprint("Conversion to temperature ->", volToTemp); delay(1000); // Wait 1 Sec. } // Create our print function // smarter than repeat the code and it will be reusable void mprint(char* text, double value){ // receives a pointer to the text and a numeric value of type double Serial.print(text); Serial.print("t"); // tabulation Serial.print(value); Serial.print("n"); // new line } Now, open a serial port from the IDE or just execute the previous Python script. We can see the output from the Arduino. Enter the following command to run the code as python script: $ python SerialPython.py The output will look like this: ____________________ Output of the sensor 145.00 Conversion to voltage 0.71 Conversion to temperature 20.80 _____________________ By using Python script, which is not simple, we managed to extract some data from a sensor after the signal is processed by the Arduino UNO. It is then extracted and read by the serial interface (script in Python) from the Arduino UNO. At this point, we will be able to do what we want with the retrieved data, we can store them in a database, represent them in a function, create a HTML document, and more. As you may have noticed we make a mathematical calculation. However, from where do we get this data? The answer is in the data sheet. Component datasheets Whenever we need to work with or handle an electrical component, we have to study their properties. For this, there are official documents, of variable length, in which the manufacturer carefully describes the characteristics of that component. First of all, we, have to identify that a component can either use the unique ID or model name that it was given when it was manufactured. TMP 36GZ We have very carefully studied the component surface and thus extracted the model. Then, using an Internet browser, we can quickly find the datasheet. Go to http://www.google.com and search for: TMP36GZ + datasheet, or visit http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Temp/TMP35_36_37.pdf to get the datasheet. Once you have the datasheet, you can see that it has various components which look similar, but with very different presentations (this can be crucial for a project, as an error in the choice of encapsulated (coating/presentation) can lead to a bitter surprise). Just as an example, if we confuse the presentation of our circuit, we might end up buying components used in cellphones, and those can hardly be soldered by a standard user as they smaller than your pinkie fingernail). Therefore, an important property to which you must pay attention is the coating/presentation of the components. In the initial pages of the datasheet you see that it shows you the physical aspects of the component. It then show you the technical characteristics, such as the working current, the output voltage, and other characteristics which we must study carefully in order to know whether they will be consistent with our setup. In this case, we are working with a range of input voltage (V) of between 2.7 V to 5.5 V is perfect. Our Arduino has an output of 5V. Furthermore, the temperature range seems appropriate. We do not wish to measure anything below 0V and 5V. Let's study the optimal behavior of the components in temperature ranges in more detail. The behavior of the components is stable only between the desired ranges. This is a very important aspect because although the measurement can be done at the ends supported by the sensor, the error will be much higher and enormously increases the deviation to small variations in ambient temperature. Therefore, always choose or build a circuit with components having the best performance as shown in the optimal region of the graph of the datasheet. Also, always respect and observe that the input voltages do not exceed the specified limit, otherwise it will be irreversibly damaged. To know more about ADC visit http://en.wikipedia.org/wiki/Analog-to-digital_converter. Once we have the temperature sensor, we have to extract the data you need. Therefore, we make a simple calculation supported in the datasheet. As we can see, we feed 5V to the sensor, and it return values between 0 and 1023. So, we use a simple formula that allows us to convert the values obtained in voltage (analog value): Voltage = (Value from the sensor) x (5/1024) The value 1024 is correct, as we have said that the data can range from 0 (including zero as a value) to 1023. This data can be strange to some, but in the world of computer and electronics, zero is seen as a very important value. Therefore, be careful when making calculations. Once we obtain a value in volts, we proceed to convert this measurement in a data in degrees. For this, by using the formula from the datasheet, we can perform the conversion quickly. We use a variable that can store data with decimal point (double or float), otherwise we will be truncating the result and losing valuable information (this may seem strange, but this bug very common). The formula for conversion is Cº = (Voltage -0.5) x 100.0. We now have all the data we need and there is a better implementation of this sensor, in which we can eliminate noise and disturbance from the data. You can dive deeper into these issues if desired. With the preceding explanation, it will not be difficult to achieve. Near Field Communication Near Field Communication (NFC) technology is based on the RFID technology. Basically, the principle consists of two devices fused onto one board, one acting as an antenna to transmit signals and the other that acts as a reader/reciever. It exchanges information using electromagnetic fields. They deal with small pieces of information. It is enough for us to make this extraordinary property almost magical. For more information on RFID and NFC, visit the following links: http://en.wikipedia.org/wiki/Near_field_communication http://en.wikipedia.org/wiki/Radio-frequency_identification Today, we find this technology in identification and access cards (a pioneering example is the Document ID used in countries like Spain), tickets for public transport, credit cards, and even mobile phones (with ability to make payment via NFC). For this project, we will use a popular module PN532 Adafruit RFID/NFC board. Feel free to use any module that suits your needs. I selected this for its value, price, and above all, for its chip. The popular PN532 is largely supported by the community, and there are vast number of publications, tools, and libraries that allow us to integrate it in many projects. For instance, you can use it in conjunction with an Arduino a Raspberry Pi, or directly with your computer (via a USB to serial adapter). Also, the PN532 board comes with a free Mifare 1k card, which we can use for our project. You can also buy tag cards or even key rings that house a small circuit inside, on which information is stored, even encrypted information. One of the benefits, besides the low price of a set of labels, is that we can block access to certain areas of information or even all the information. This allows us in maintaining our valuable data safely or avoid the cloned/duplicate of this security tag. There are a number of standards that allow us to classify the different types of existing cards, one of which is the Mifare 1K card (You can use the example presented here and make small changes to adapt it to other NFC cards). For more information on MIFARE cards, visit http://en.wikipedia.org/wiki/MIFARE. As the name suggests, this model can store up to 1KB (Kilobyte) information, and is of the EEPROM type (can be rewritten). Furthermore, it possesses a serial number unique to each card (this is very interesting because it is a perfect fingerprint that will allow us to distinguish between two cards with the same information). Internally, it is divided into 16 sectors (0-15), and is subdivided into 4 blocks (0-3) with at least 16 bytes of information. For each block, we can set a password that prevents reading your content if it does not pose. (At this point, we are not going to manipulate the key because the user can accidentally, encrypt a card, leaving it unusable). By default, all cards usually come with a default password (ffffffffffff). The reader should consult the link http://www.adafruit.com/product/789, to continue with the examples, or if you select another antenna, search the internet for the same features. The link also has tutorials to make the board compatible with other devices (Raspberry Pi), the datasheet, and the library can be downloaded from Github to use this module. We will have a look at this last point more closely later; just download the libraries for now and follow my steps. It is one of the best advantages of open hardware, that the designs can be changed and improved by anyone. Remember, when handling electrical components, we have to be careful and avoid electrostatic sources. As you have already seen, the module is inserted directly on the Arduino. If soldered pins do not engage directly above then you have to use Dupont male-female connectors to be accessible other unused ports. Once we have the mounted module, we will use the library that is used to control this device (top link) and install it. It is very important that you rename the library to download, eliminate possible blanks or the like. However, the import process may throw an error. Once we have this ready and have our Mifare 1k card close, let's look at a small example that will help us to better understand all this technology and get the UID (Unique Identifier) of our tag: // ########################### // Author : Jorge Reyes Castro // Arduino Home Security Book // ########################### #include <Wire.h> #include <Adafruit_NFCShield_I2C.h> // This is the Adafruit Library //MACROS #define IRQ (2) #define RESET (3) Adafruit_NFCShield_I2C nfc(IRQ, RESET); //Prepare NFC MODULE //SETUP void setup(void){ Serial.begin(115200); //Open Serial Port Serial.print("###### Serial Port Ready ######n"); nfc.begin(); //Start NFC nfc.SAMConfig(); if(!Serial){ //If the serial port don´ work wait delay(500); } } //LOOP void loop(void) { uint8_t success; uint8_t uid[] = { 0, 0, 0, 0}; //Buffer to save the read value //uint8_t ok[] = { X, X, X, X }; //Put your serial Number. * 1 uint8_t uidLength; success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength); // READ // If TAG PRESENT if (success) { Serial.println("Found cardn"); Serial.print(" UID Value: t"); nfc.PrintHex(uid, uidLength); //Convert Bytes to Hex. int n = 0; Serial.print("Your Serial Number: t"); // This function show the real value // 4 position runs extracting data while (n < 4){ // Copy and remenber to use in the next example * 1 Serial.print(uid[n]); Serial.print("t"); n++; } Serial.println(""); } delay(1500); //wait 1'5 sec } Now open a serial port from the IDE or just execute the previous Python script. We can see the output from the Arduino. Enter the following command to run the Python code: $ python SerialPython.py The output will look like this: ###### Serial Port Ready ###### Found card UID Value: 0xED 0x05 0xED 0x9A Your Serial Number: 237 5 237 154 So we have our own identification number, but what are those letters that appear above our number? Well, it is hexadecimal, another widely used way to represent numbers and information in the computer. It represents a small set of characters and more numbers in decimal notation than we usually use. (Remember our card with little space. We use hexadecimal to be more useful to save memory). An example is the number 15, we need two characters in tenth, while in decimal just one character is needed f (0xf, this is how the hexadecimal code, preceded by 0x, this is a thing to remember as this would be of great help later on). Open a console and the Python screen. Run the following code to obtain hexadecimal numbers, and will see transformation to decimal (you can replace them with the values previously put in the code): For more information about numbering systems, see http://en.wikipedia.org/wiki/Hexadecimal. $ python >>> 0xED 237 >>> 0x05 5 >>> 0x9A 154 You can see that they are same numbers.   RFID/NFC module and tag Once we are already familiar with the use of this technology, we proceed to increase the difficultly and create our little access control. Be sure to record the serial number of your access card (in decimal). We will make this little montage focus on the use of NFC cards, no authentication key. As mentioned earlier, there is a variant of this exercise and I suggest that the reader complete this on their part, thus increasing the robustness of our assembly. In addition, we add a LED and buzzer to help us improve the usability. Access control The objective is simple: we just have to let people in who have a specific card with a specific serial number. If you want to use encrypted keys, you can change the ID of an encrypted message inside the card with a key known only to the creator of the card. When a successful identification occurs, a green flash lead us to report that someone has had authorized access to the system. In addition, the user is notified of the access through a pleasant sound, for example, will invite you to push the door to open it. Otherwise, an alarm is sounded repeatedly, alerting us of the offense and activating an alert command center (a red flash that is repeated and consistent, which captures the attention of the watchman.) Feel free to add more elements. The diagram shall be as follows:   Our scheme – Image obtained using Fritzing The following is a much clearer representation of the preceding wiring diagram as it avoids the part of the antenna for easy reading:   Our design - Image obtained using Fritzing Once we clear the way to take our design, you can begin to connect all elements and then create our code for the project. The following is the code for the NFC access: //########################### //Author : Jorge Reyes Castro //Arduino Home Security Book //########################### #include <Wire.h> #include <Adafruit_NFCShield_I2C.h> // this is the Adafruit Library //MACROS #define IRQ (2) #define RESET (3) Adafruit_NFCShield_I2C nfc(IRQ, RESET); //Prepare NFC MODULE void setup(void) { pinMode(5, OUTPUT); // PIEZO pinMode(9, OUTPUT); // LED RED pinMode(10, OUTPUT); // LED GREEN okHAL(); Serial.begin(115200); //Open Serial Port Serial.print("###### Serial Port Ready ######n"); nfc.begin(); //Start NFC nfc.SAMConfig(); if(!Serial){ // If the Serial Port don't work wait delay(500); } } void loop(void) { uint8_t success; uint8_t uid[] = { 0, 0, 0, 0}; //Buffer to storage the ID from the read tag uint8_t ok[] = { 237, 5, 237, 154}; //Put your serial Number. uint8_t uidLength; success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength); //READ if (success) { okHAL(); // Sound "OK" Serial.println("Found cardn"); Serial.print(" UID Value: t"); nfc.PrintHex(uid, uidLength); // The Value from the UID in HEX int n = 0; Serial.print("Your Serial Number: t"); // The Value from the UID in DEC while (n < 4){ Serial.print(uid[n]); Serial.print("t"); n++; } Serial.println(""); Serial.println(" Wait..n"); // Verification int m = 0, l = 0; while (m < 5){ if(uid[m] == ok[l]){ // Compare the elements one by one from the obtained UID card that was stored previously by us. } else if(m == 4){ Serial.println("###### Authorized ######n"); // ALL OK authOk(); okHAL(); } else{ Serial.println("###### Unauthorized ######n"); // NOT EQUALS ALARM !!! authError(); errorHAL(); m = 6; } m++; l++; } } delay(1500); } //create a function that allows us to quickly create sounds // alarm ( "time to wait" in ms, "tone/power") void alarm(unsigned char wait, unsigned char power ){ analogWrite(5, power); delay(wait); analogWrite(5, 0); } // HAL OK void okHAL(){ alarm(200, 250); alarm(100, 50); alarm(300, 250); } // HAL ERROR void errorHAL(){ int n = 0 ; while(n< 3){ alarm(200, 50); alarm(100, 250); alarm(300, 50); n++; } } // These functions activated led when we called. // (Look at the code of the upper part where they are used) // RED - FAST void authError(){ int n = 0 ; while(n< 20){ digitalWrite(9, HIGH); delay(500); digitalWrite(9, LOW); delay(500); n++; } } // GREEN - SLOW void authOk(){ int n = 0 ; while(n< 5){ digitalWrite(10, HIGH); delay(2000); digitalWrite(10, LOW); delay(500); n++; } } // This code can be reduced to increase efficiency and speed of execution, // but has been created with didactic purposes and therefore increased readability Once you have the copy, compile it, and throw it on your board. Ensure that our creation now has a voice, whenever we start communicating or when someone tries to authenticate. In addition, we have added two simple LEDs that give us much information about our design. Finally, we have our whole system, perhaps it will be time to improve our Python script and try the serial port settings, creating a red window or alarm sound on the computer that is receiving the data. It is the turn of reader to assimilate all of the concepts seen in this day and modify them to delve deeper and deeper into the wonderful world of programming. Summary This has been an intense article, full of new elements. We learned to handle technical documentation fluently, covered the different type of signals and their main differences, found the perfect component for our needs, and finally applied it to a real project, without forgetting the NFC. This has just been introduced, laying the foundation for the reader to be able to modify and study it deeper it in the future. Resources for Article: Further resources on this subject: Getting Started with Arduino[article] Arduino Development[article] The Arduino Mobile Robot [article]
Read more
  • 0
  • 0
  • 4006

article-image-getting-started-arduino
Packt
20 Aug 2015
12 min read
Save for later

Getting Started with Arduino

Packt
20 Aug 2015
12 min read
Hello there! If you are reading this article by Adith Jagadish Boloor, the author of the book Arduino By Example, it means that you've taken your first step to make fascinating projects using Arduinos. This article will teach you how to set up an Arduino and write your first Arduino code. You'll be in good hands whilst you learn some of the basics aspects of coding using the Arduino platform, which will allow you to build almost anything from robots, home automation systems, touch interfaces, sensory systems, and so on. Firstly, you will learn how to install the powerful Arduino software, then set that up, followed by hooking up your Arduino board and, after making sure that everything is fine and well, you will write your first code! Once you are comfortable with that, we will modify the code to make it do something more, which is often what Arduino coders do. We do not just create completely new programs but often we build on what has been done before, to make it better and more suited to our objectives. The contents of this article are divided into the following topics: Prerequisites Setting up Hello World Summary (For more resources related to this topic, see here.) Prerequisites Well, you can't jump onto a horse without putting on a saddle first, can you? This section will cover what components you need to start coding on an Arduino. These can be purchased from your favorite electrical hobby store or simply ordered online. Materials needed 1x Arduino compatible board such as an Arduino UNO 1x USB cable A to B 2x LEDs 2x 330Ω resistors A mini breadboard 5x male-to-male jumper wires Note The UNO can be substituted for any other Arduino board (Mega, Leonardo and so on) for most of the projects. These boards have their own extra features. For example, the Mega has almost double the number of I/O (input/output) pins for added functionality. The Leonardo has a feature which enables it to control the keyboard and mouse of your computer. Setting up This topic involves downloading the Arduino software, installing the drivers, hooking up the Arduino, and understanding the IDE menus. Downloading and installing the software Arduino is open source-oriented. This means all the software is free to use non-commercially. Go to http://arduino.cc/en/Main/Software and download the latest version for your specific operating system. If you are using a Mac, make sure you choose the right Java version, and similarly on Linux, download the 32 or 64 bit version according to your computer. Arduino download page Windows Once you have downloaded the setup file, run it. If it asks for administrator privileges, allow it. Install it in its default location (C:Program FilesArduino or C:Program Files (x86)Arduino). Create a new folder in this location and rename it My Codes or something where you can conveniently store all your programs. Mac OS X Once the ZIP file has finished downloading, double-click to expand it. Copy the Arduino application to the Applications folder. You won't have to install additional drivers to make the Arduino work since we will be using only the Arduino UNO and MEGA. You're all set. If you didn't get anything to work, go to https://www.arduino.cc/en/guide/macOSX. Linux (Ubuntu 12.04 and above) Once you have downloaded the latest version of Arduino from the above link, install the compiler and the library packages using the following command: sudo apt-get update && sudo apt-get install arduino arduino-core If you are using a different version of Linux, this official Arduino walkthrough at http://playground.arduino.cc/Learning/Linux will help you out. Connecting the Arduino It is time to hook up the Arduino board. Plug in the respective USB terminals to the USB cable and the tiny LEDs on the Arduino should begin to flash. Arduino UNO plugged in If the LEDs didn't turn on, ensure that the USB port on your computer is functioning and make sure the cable isn't faulty. If it still does not light up, there is something wrong with your board and you should get it checked. Windows The computer will begin to install the drivers for the Arduino by itself. If it does not succeed, do the following: Open Device Manager Click on Ports (COM & LPT) Right-click on Unknown Device and select Properties Click install driver and choose browse files on the computer Choose the drivers folder in the previously installed Arduino folder The computer should say that your Arduino UNO (USB) has been successfully installed on COM port (xx). Here xx refers to a single or double digit number. If this message didn't pop up, go back to the Device Manager and check if it has been installed under COM ports. Arduino UNO COM port Remember the (COMxx) port that the Arduino UNO was installed on. Mac OS X If you are using Mac OS, a dialog box will tell you that a new network interface has been detected. Click Network Preferences and select Apply. Even though the Arduino board may show up as Not Configured, it should be working perfectly. Linux You are ready to go. The serial ports for Mac OS and Linux will be obtained once the Arduino software has been launched. The Arduino IDE The Arduino software, commonly referred to as the Arduino IDE (integrated development environment). The IDE for Windows, Mac OS and Linux is almost identical. Now let's look at some of the highlights of this software. Arduino IDE This is the window that you will see when you first start up the IDE. The tick/check mark verifies that your code's syntax is correct. The arrow pointing right is the button that uploads the code to the board and checks if the code has been changed since the last upload or verification. The magnifying glass is the Serial Monitor. This is used to input text or output debugging statements or sensor values. Examples of Arduino Every Arduino programmer starts by using one of these examples. Even after mastering Arduino, one would still return here to find examples to use. Arduino tools The screenshot shows the tools that are available in the Arduino IDE. The Board option opens up all the different boards that the software supports. Hello World The easiest way to start working with Arduinos begins here. You'll learn how to output print statements. The Arduino uses a Serial Monitor for displaying information such as print statements, sensor data and the like. This is a very powerful tool for debugging long codes. Now for your first code! Writing a simple print statement Open up the Arduino IDE and copy the following code into a new sketch. void setup() { Serial.begin(9600); Serial.println("Hello World!"); } void loop() { } Open Tools | Board and choose Arduino UNO, as shown in the following screenshot: Open Tools | Port and choose the appropriate port (remember the previous COM xx number? select that), as shown in the following screenshot. For Mac and Linux users, once you have connected the Arduino board, going to Tools | Serial Port will give you a list of ports. The Arduino is typically something like /dev/tty.usbmodem12345 where 12345 will be different. Selecting port Finally, hit the upload button. If everything is fine, the LEDs on the Arduino should start flickering as the code is uploaded to the Arduino. The code will then have uploaded to the Arduino. To see what you have accomplished, click on the Serial Monitor button on the right side and switch the baud rate on the Serial Monitor window to 9600. You should see your message Hello World! waiting for you there. LED blink That wasn't too bad but it isn't cool enough. This article will enlighten you, literally. Open up a new sketch. Go to File | Examples | Basics | Blink. Blink example Before we upload the code, we need to make sure of one more thing. Remember the LED that we spoke about in the prerequisites? Let’s learn a bit about it before plugging it in. LED basics We will make use of it now. Plug in the LED such that the longer leg goes into pin 13 and the shorter leg goes into the GND pin as in the following images: LED blink setup (Fritzing) This diagram is made using software called Fritzing. This software will be used in future projects to make it cleaner to see and easier to understand as compared to a photograph with all the wires running around. Fritzing is opensource software which you can learn more about at www.fritzing.org. Arduino LED setup Upload the code. Your LED will start blinking, as shown in the following image. Lit up LED Isn't it just fascinating? You just programmed your first hardware. There's no stopping you now. Let's see what the code does and what happens when you change it. This is the blink example code that you just used. /* Blink Turns on an LED on for one second, then off for one second, repeatedly. This example code is in the public domain. */ //Pin 13 has an LED connected on most Arduino boards. //give it a name: int led = 13; //the setup routine runs once when you press reset: void setup() { // initialize the digital pin as an output. pinMode(led, OUTPUT); } //the loop routine runs over and over again forever: void loop() { digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalWrite(led, LOW); // turn the LED off by making the voltage LOW delay(1000); // wait for a second } We have three major sections in this code. int led = 13; This line simply stores the numerical PIN value onto a variable called led. void setup() { // initialize the digital pin as an output. pinMode(led, OUTPUT); } This is the setup function. Here is where you tell the Arduino what is connected on each used pin. In this case, we tell the Arduino that there is an output device (LED) on pin 13. void loop() { digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalWrite(led, LOW); // turn the LED off by making the voltage LOW delay(1000); // wait for a second } This is the loop function. It tells the Arduino to keep repeating whatever is inside it in a sequence. The digitalWrite command is like a switch that can be turned ON (HIGH) or OFF (LOW). The delay(1000) function simply makes the Arduino wait for a second before heading to the next line. If you wanted to add another LED, you'd need some additional tools and some changes to the code. This is the setup that you want to create. Connecting two LEDs to an Arduino If this is your first time using a breadboard, take some time to make sure all the connections are in the right place. The colors of the wires don't matter. However, GND is denoted using a black wire and VCC/5V/PWR is denoted with a red wire. The two resistors, each connected in series (acting like a connecting wire itself) with the LEDs limit the current flowing to the LEDs, making sure they don't blow up. As before, create a new sketch and paste in the following code: /* Double Blink Turns on and off two LEDs alternatively for one second each repeatedly. This example code is in the public domain. */ int led1 = 12; int led2 = 13; void setup() { // initialize the digital pins as an output. pinMode(led1, OUTPUT); pinMode(led2, OUTPUT); // turn off LEDs before loop begins digitalWrite(led1, LOW); // turn the LED off (LOW is the voltage level) digitalWrite(led2, LOW); // turn the LED off (LOW is the voltage level) } //the loop routine runs over and over again forever: void loop() { digitalWrite(led1, HIGH); // turn the LED on (HIGH is the voltage level) digitalWrite(led2, LOW); // turn the LED off (LOW is the voltage level) delay(1000); // wait for a second digitalWrite(led1, LOW); // turn the LED off (LOW is the voltage level) digitalWrite(led2, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second } Once again, make sure the connections are made properly, especially the positive LEDs (longer to OUTPUT PIN) and the negative (shorter to GND) terminals. Save the code into DoubleBlink.ino. Now, if you make any changes to it, you can always retrieve it. Upload the code. 3… 2… 1… And there you have it, an alternating LED blink cycle created purely with the Arduino. You can try changing the delay to see its effects. For the sake of completeness, I would like to mention that you could take this mini-project further by using a battery to power the system and decorate your desk/room/house. Summary You have now completed the basic introduction to the world of Arduino. In short, you have successfully set up your Arduino and have written your first code. You also learned how to modify the existing code to create something new, making it more suitable for your specific needs. This methodology will be applied repeatedly while programming, because almost all the code available is open source and it saves time and energy. Resources for Article: Further resources on this subject: Central Air and Heating Thermostat [article] Christmas Light Sequencer [article] Webcam and Video Wizardry [article]
Read more
  • 0
  • 0
  • 6185

article-image-ros-filesystem-levels
Packt
18 Aug 2015
10 min read
Save for later

The ROS Filesystem levels

Packt
18 Aug 2015
10 min read
In this article by Enrique Fernández, Luis Sánchez Crespo, Anil Mahtani, and Aaron Martinez, authors of the book Learning ROS for Robotics Programming - Second Edition, you will see the different levels of filesystems in ROS. (For more resources related to this topic, see here.) When you start to use or develop projects with ROS, you will see that although this concept can sound strange in the beginning, you will become familiar with it with time. Similar to an operating system, an ROS program is divided into folders, and these folders have files that describe their functionalities: Packages: Packages form the atomic level of ROS. A package has the minimum structure and content to create a program within ROS. It may have ROS runtime processes (nodes), configuration files, and so on. Package manifests: Package manifests provide information about a package, licenses, dependencies, compilation flags, and so on. A package manifest is managed with a file called package.xml. Metapackages: When you want to aggregate several packages in a group, you will use metapackages. In ROS Fuerte, this form for ordering packages was called Stacks. To maintain the simplicity of ROS, the stacks were removed, and now, metapackages make up this function. In ROS, there exist a lot of these metapackages; one of them is the navigation stack. Metapackage manifests: Metapackage manifests (package.xml) are similar to a normal package but with an export tag in XML. It also has certain restrictions in its structure. Message (msg) types: A message is the information that a process sends to other processes. ROS has a lot of standard types of messages. Message descriptions are stored in my_package/msg/MyMessageType.msg. Service (srv) types: Service descriptions, stored in my_package/srv/MyServiceType.srv, define the request and response data structures for services provided by each process in ROS. The workspace Basically, the workspace is a folder where we have packages, edit the source files or compile packages. It is useful when you want to compile various packages at the same time and is a good place to have all our developments localized. A typical workspace is shown in the following screenshot. Each folder is a different space with a different role: The Source space: In the Source space (the src folder), you put your packages, projects, clone packages, and so on. One of the most important files in this space is CMakeLists.txt. The src folder has this file because it is invoked by CMake when you configure the packages in the workspace. This file is created with the catkin_init_workspace command. The Build space: In the build folder, CMake and catkin keep the cache information, configuration, and other intermediate files for our packages and projects. The Development (devel) space: The devel folder is used to keep the compiled programs. This is used to test the programs without the installation step. Once the programs are tested, you can install or export the package to share with other developers. You have two options with regard to building packages with catkin. The first one is to use the standard CMake workflow. With this, you can compile one package at a time, as shown in the following commands: $ cmake packageToBuild/ $ make If you want to compile all your packages, you can use the catkin_make command line, as shown in the following commands: $ cd workspace $ catkin_make Both commands build the executables in the build space directory configured in ROS. Another interesting feature of ROS are its overlays. When you are working with a package of ROS, for example, Turtlesim, you can do it with the installed version, or you can download the source file and compile it to use your modified version. ROS permits you to use your version of this package instead of the installed version. This is very useful information if you are working on an upgrade of an installed package. Packages Usually, when we talk about packages, we refer to a typical structure of files and folders. This structure looks as follows: include/package_name/: This directory includes the headers of the libraries that you would need. msg/: If you develop nonstandard messages, put them here. scripts/: These are executable scripts that can be in Bash, Python, or any other scripting language. src/: This is where the source files of your programs are present. You can create a folder for nodes and nodelets or organize it as you want. srv/: This represents the service (srv) types. CMakeLists.txt: This is the CMake build file. package.xml: This is the package manifest. To create, modify, or work with packages, ROS gives us tools for assistance, some of which are as follows: rospack: This command is used to get information or find packages in the system. catkin_create_pkg: This command is used when you want to create a new package. catkin_make: This command is used to compile a workspace. rosdep: This command installs the system dependencies of a package. rqt_dep: This command is used to see the package dependencies as a graph. If you want to see the package dependencies as a graph, you will find a plugin called package graph in rqt. Select a package and see the dependencies. To move between packages and their folders and files, ROS gives us a very useful package called rosbash, which provides commands that are very similar to Linux commands. The following are a few examples: roscd: This command helps us change the directory. This is similar to the cd command in Linux. rosed: This command is used to edit a file. roscp: This command is used to copy a file from a package. rosd: This command lists the directories of a package. rosls: This command lists the files from a package. This is similar to the ls command in Linux. The package.xml file must be in a package, and it is used to specify information about the package. If you find this file inside a folder, probably this folder is a package or a metapackage. If you open the package.xml file, you will see information about the name of the package, dependencies, and so on. All of this is to make the installation and the distribution of these packages easy. Two typical tags that are used in the package.xml file are <build_depend> and <run _depend>. The <build_depend> tag shows what packages must be installed before installing the current package. This is because the new package might use a functionality of another package. Metapackages As we have shown earlier, metapackages are special packages with only one file inside; this file is package.xml. This package does not have other files, such as code, includes, and so on. Metapackages are used to refer to others packages that are normally grouped following a feature-like functionality, for example, navigation stack, ros_tutorials, and so on. You can convert your stacks and packages from ROS Fuerte to Hydro and catkin using certain rules for migration. These rules can be found at http://wiki.ros.org/catkin/migrating_from_rosbuild. In the following screenshot, you can see the content from the package.xml file in the ros_tutorials metapackage. You can see the <export> tag and the <run_depend> tag. These are necessary in the package manifest. If you want to locate the ros_tutorials metapackage, you can use the following command: $ rosstack find ros_tutorials The output will be a path, such as /opt/ros/hydro/share/ros_tutorials. To see the code inside, you can use the following command line: $ vim /opt/ros/hydro/share/ros_tutorials/package.xml Remember that Hydro uses metapackages, not stacks, but the rosstack find command line works to find metapackages. Messages ROS uses a simplified message description language to describe the data values that ROS nodes publish. With this description, ROS can generate the right source code for these types of messages in several programming languages. ROS has a lot of messages predefined, but if you develop a new message, it will be in the msg/ folder of your package. Inside that folder, certain files with the .msg extension define the messages. A message must have two principal parts: fields and constants. Fields define the type of data to be transmitted in the message, for example, int32, float32, and string, or new types that you have created earlier, such as type1 and type2. Constants define the name of the fields. An example of a msg file is as follows: int32 id float32 vel string name In ROS, you can find a lot of standard types to use in messages, as shown in the following table list: Primitive type Serialization C++ Python bool (1) unsigned 8-bit int uint8_t(2) bool int8 signed 8-bit int int8_t int uint8 unsigned 8-bit int uint8_t int(3) int16 signed 16-bit int int16_t int uint16 unsigned 16-bit int uint16_t int int32 signed 32-bit int int32_t int uint32 unsigned 32-bit int uint32_t int int64 signed 64-bit int int64_t long uint64 unsigned 64-bit int uint64_t long float32 32-bit IEEE float float float float64 64-bit IEEE float double float string ascii string (4) std::string string time secs/nsecs signed 32-bit ints ros::Time rospy.Time duration secs/nsecs signed 32-bit ints ros::Duration rospy.Duration A special type in ROS is the header type. This is used to add the time, frame, and so on. This permits you to have the messages numbered, to see who is sending the message, and to have more functions that are transparent for the user and that ROS is handling. The header type contains the following fields: uint32 seq time stamp string frame_id You can see the structure using the following command: $ rosmsg show std_msgs/Header Thanks to the header type, it is possible to record the timestamp and frame of what is happening with the robot. In ROS, there exist tools to work with messages. The rosmsg tool prints out the message definition information and can find the source files that use a message type. In the upcoming sections, we will see how to create messages with the right tools. Services ROS uses a simplified service description language to describe ROS service types. This builds directly upon the ROS msg format to enable request/response communication between nodes. Service descriptions are stored in .srv files in the srv/ subdirectory of a package. To call a service, you need to use the package name, along with the service name; for example, you will refer to the sample_package1/srv/sample1.srv file as sample_package1/sample1. There are tools that exist to perform functions with services. The rossrv tool prints out the service descriptions and packages that contain the .srv files, and finds source files that use a service type. If you want to create a service, ROS can help you with the service generator. These tools generate code from an initial specification of the service. You only need to add the gensrv() line to your CMakeLists.txt file. Summary In this article, we saw the different types of filesystems present in the ROS architecture. Resources for Article: Further resources on this subject: Building robots that can walk [article] Avoiding Obstacles Using Sensors [article] Managing Test Structure with Robot Framework [article]
Read more
  • 0
  • 0
  • 5554

article-image-integrating-muzzley
Packt
10 Aug 2015
12 min read
Save for later

Integrating with Muzzley

Packt
10 Aug 2015
12 min read
In this article by Miguel de Sousa, author of the book Internet of Things with Intel Galileo, we will cover the following topics: Wiring the circuit The Muzzley IoT ecosystem Creating a Muzzley app Lighting up the entrance door (For more resources related to this topic, see here.) One identified issue regarding IoT is that there will be lots of connected devices and each one speaks its own language, not sharing the same protocols with other devices. This leads to an increasing number of apps to control each of those devices. Every time you purchase connected products, you'll be required to have the exclusive product app, and, in the near future, where it is predicted that more devices will be connected to the Internet than people, this is indeed a problem, which is known as the basket of remotes. Many solutions have been appearing for this problem. Some of them focus on creating common communication standards between the devices or even creating their own protocol such as the Intel Common Connectivity Framework (CCF). A different approach consists in predicting the device's interactions, where collected data is used to predict and trigger actions on the specific devices. An example using this approach is Muzzley. It not only supports a common way to speak with the devices, but also learns from the users' interaction, allowing them to control all their devices from a common app, and on collecting usage data, it can predict users' actions and even make different devices work together. In this article, we will start by understanding what Muzzley is and how we can integrate with it. We will then do some development to allow you to control your own building's entrance door. For this purpose, we will use Galileo as a bridge to communicate with a relay and the Muzzley cloud, allowing you to control the door from a common mobile app and from anywhere as long as there is Internet access. Wiring the circuit In this article, we'll be using a real home AC inter-communicator with a building entrance door unlock button and this will require you to do some homework. This integration will require you to open your inter-communicator and adjust the inner circuit, so be aware that there are always risks of damaging it. If you don't want to use a real inter-communicator, you can replace it by an LED or even by the buzzer module. If you want to use a real device, you can use a DC inter-communicator, but in this guide, we'll only be explaining how to do the wiring using an AC inter-communicator. The first thing you have to do is to take a look at the device manual and check whether it works with AC current, and the voltage it requires. If you can't locate your product manual, search for it online. In this article, we'll be using the solid state relay. This relay accepts a voltage range from 24 V up to 380 V AC, and your inter-communicator should also work in this voltage range. You'll also need some electrical wires and electrical wires junctions: Wire junctions and the solid state relay This equipment will be used to adapt the door unlocking circuit to allow it to be controlled from the Galileo board using a relay. The main idea is to use a relay to close the door opener circuit, resulting in the door being unlocked. This can be accomplished by joining the inter-communicator switch wires with the relay wires. Use some wire and wire junctions to do it, as displayed in the following image: Wiring the circuit The building/house AC circuit is represented in yellow, and S1 and S2 represent the inter-communicator switch (button). On pressing the button, we will also be closing this circuit, and the door will be unlocked. This way, the lock can be controlled both ways, using the original button and the relay. Before starting to wire the circuit, make sure that the inter-communicator circuit is powered off. If you can't switch it off, you can always turn off your house electrical board for a couple of minutes. Make sure that it is powered off by pressing the unlock button and trying to open the door. If you are not sure of what you must do or don't feel comfortable doing it, ask for help from someone more experienced. Open your inter-communicator, locate the switch, and perform the changes displayed in the preceding image (you may have to do some soldering). The Intel Galileo board will then activate the relay using pin 13, where you should wire it to the relay's connector number 3, and the Galileo's ground (GND) should be connected to the relay's connector number 4. Beware that not all the inter-communicator circuits work the same way and although we try to provide a general way to do it, there're always the risk of damaging your device or being electrocuted. Do it at your own risk. Power on your inter-communicator circuit and check whether you can open the door by pressing the unlock door button. If you prefer not using the inter-communicator with the relay, you can always replace it with a buzzer or an LED to simulate the door opening. Also, since the relay is connected to Galileo's pin 13, with the same relay code, you'll have visual feedback from the Galileo's onboard LED. The Muzzley IoT ecosystem Muzzley is an Internet of Things ecosystem that is composed of connected devices, mobile apps, and cloud-based services. Devices can be integrated with Muzzley through the device cloud or the device itself: It offers device control, a rules system, and a machine learning system that predicts and suggests actions, based on the device usage. The mobile app is available for Android, iOS, and Windows phone. It can pack all your Internet-connected devices in to a single common app, allowing them to be controlled together, and to work with other devices that are available in real-world stores or even other homemade connected devices, like the one we will create in this article. Muzzley is known for being one of the first generation platforms with the ability to predict a users' actions by learning from the user's interaction with their own devices. Human behavior is mostly unpredictable, but for convenience, people end up creating routines in their daily lives. The interaction with home devices is an example where human behavior can be observed and learned by an automated system. Muzzley tries to take advantage of these behaviors by identifying the user's recurrent routines and making suggestions that could accelerate and simplify the interaction with the mobile app and devices. Devices that don't know of each others' existence get connected through the user behavior and may create synergies among themselves. When the user starts using the Muzzley app, the interaction is observed by a profiler agent that tries to acquire a behavioral network of the linked cause-effect events. When the frequency of these network associations becomes important enough, the profiler agent emits a suggestion for the user to act upon. For instance, if every time a user arrives home, he switches on the house lights, check the thermostat, and adjust the air conditioner accordingly, the profiler agent will emit a set of suggestions based on this. The cause of the suggestion is identified and shortcuts are offered for the effect-associated action. For instance, the user could receive in the Muzzley app the following suggestions: "You are arriving at a known location. Every time you arrive here, you switch on the «Entrance bulb». Would you like to do it now?"; or "You are arriving at a known location. The thermostat «Living room» says that the temperature is at 15 degrees Celsius. Would you like to set your «Living room» air conditioner to 21 degrees Celsius?" When it comes to security and privacy, Muzzley takes it seriously and all the collected data is used exclusively to analyze behaviors to help make your life easier. This is the system where we will be integrating our door unlocker. Creating a Muzzley app The first step is to own a Muzzley developer account. If you don't have one yet, you can obtain one by visiting https://muzzley.com/developers, clicking on the Sign up button, and submitting the displayed form. To create an app, click on the top menu option Apps and then Create app. Name your App Galileo Lock and if you want to, add a description to your project. As soon as you click on Submit, you'll see two buttons displayed, allowing you to select the integration type: Muzzley allows you to integrate through the product manufacturer cloud or directly with a device. In this example, we will be integrating directly with the device. To do so, click on Device to Cloud integration. Fill in the provider name as you wish and pick two image URLs to be used as the profile (for example, http://hub.packtpub.com/wp-content/uploads/2015/08/Commercial1.jpg) and channel (for example, http://hub.packtpub.com/wp-content/uploads/2015/08/lock.png) images. We can select one of two available ways to add our device: it can be done using UPnP discovery or by inserting a custom serial number. Pick the device discovery option Serial number and ignore the fields Interface UUID and Email Access List; we will come back for them later. Save your changes by pressing the Save changes button. Lighting up the entrance door Now that we can unlock our door from anywhere using the mobile phone with an Internet connection, a nice thing to have is the entrance lights turn on when you open the building door using your Muzzley app. To do this, you can use the Muzzley workers to define rules to perform an action when the door is unlocked using the mobile app. To do this, you'll need to own one of the Muzzley-enabled smart bulbs such as Philips Hue, WeMo LED Lighting, Milight, Easybulb, or LIFX. You can find all the enabled devices in the app profiles selection list: If you don't have those specific lighting devices but have another type of connected device, search the available list to see whether it is supported. If it is, you can use that instead. Add your bulb channel to your account. You should now find it listed in your channels under the category Lighting. If you click on it, you'll be able to control the lights. To activate the trigger option in the lock profile we created previously, go to the Muzzley website and head back to the Profile Spec app, located inside App Details. Expand the property lock status by clicking on the arrow sign in the property #1 - Lock Status section and then expand the controlInterfaces section. Create a new control interface by clicking on the +controlInterface button. In the new controlInterface #1 section, we'll need to define the possible choices of label-values for this property when setting a rule. Feel free to insert an id, and in the control interface option, select the text-picker option. In the config field, we'll need to specify each of the available options, setting the display label and the real value that will be published. Insert the following JSON object: {"options":[{"value":"true","label":"Lock"}, {"value":"false","label":"Unlock"}]}. Now we need to create a trigger. In the profile spec, expand the trigger section. Create a new trigger by clicking on the +trigger button. Inside the newly created section, select the equals condition. Create an input by clicking on +input, insert the ID value, insert the ID of the control interface you have just created in the controlInterfaceId text field. Finally, add the [{"source":"selection.value","target":"data.value"}].path to map the data. Open your mobile app and click on the workers icon. Clicking on Create Worker will display the worker creation menu to you. Here, you'll be able to select a channel component property as a trigger to some other channel component property: Select the lock and select the Lock Status is equal to Unlock trigger. Save it and select the action button. In here, select the smart bulb you own and select the Status On option: After saving this rule, give it a try and use your mobile phone to unlock the door. The smart bulb should then turn on. With this, you can configure many things in your home even before you arrive there. In this specific scenario, we used our door locker as a trigger to accomplish an action on a lightbulb. If you want, you can do the opposite and open the door when a lightbulb lights up a specific color for instance. To do it, similar to how you configured your device trigger, you just have to set up the action options in your device profile page. Summary Everyday objects that surround us are being transformed into information ecosystems and the way we interact with them is slowly changing. Although IoT is growing up fast, it is nowadays in an early stage, and many issues must be solved in order to make it successfully scalable. By 2020, it is estimated that there will be more than 25 billion devices connected to the Internet. This fast growth without security regulations and deep security studies are leading to major concerns regarding the two biggest IoT challenges—security and privacy. Devices in our home that are remotely controllable or even personal data information getting into the wrong hands could be the recipe for a disaster. In this article you have learned the basic steps in wiring the circuit of your Galileo board, creating a Muzzley app, and lighting up the entrance door of your building through your Muzzley app, by using Intel Galileo board as a bridge to communicate with Muzzley cloud. Resources for Article: Further resources on this subject: Getting Started with Intel Galileo [article] Getting the current weather forecast [article] Controlling DC motors using a shield [article]
Read more
  • 0
  • 0
  • 4539

article-image-programmable-dc-motor-controller-lcd
Packt
23 Jul 2015
23 min read
Save for later

Programmable DC Motor Controller with an LCD

Packt
23 Jul 2015
23 min read
In this article by Don Wilcher author of the book Arduino Electronics Blueprints, we will see how a programmable logic controller (PLC) is used to operate various electronic and electromechanical devices that are wired to I/O wiring modules. The PLC receives signals from sensors, transducers, and electromechanical switches that are wired to its input wiring module and processes the electrical data by using a microcontroller. The embedded software that is stored in the microcontroller's memory can control external devices, such as electromechanical relays, motors (the AC and DC types), solenoids, and visual displays that are wired to its output wiring module. The PLC programmer programs the industrial computer by using a special programming language known as ladder logic. The PLC ladder logic is a graphical programming language that uses computer instruction symbols for automation and controls to operate robots, industrial machines, and conveyor systems. The PLC, along with the ladder logic software, is very expensive. However, with its off-the-shelf electronic components, Arduino can be used as an alternate mini industrial controller for Maker type robotics and machine control projects. In this article, we will see how Arduino can operate as a mini PLC that is capable of controlling a small electric DC motor with a simple two-step programming procedure. Details regarding how one can interface a transistor DC motor with a discrete digital logic circuit to an Arduino and write the control cursor selection code will be provided as well. This article will also provide the build instructions for a programmable motor controller. The LCD will provide the programming directions that are needed to operate an electric motor. The parts that are required to build a programmable motor controller are shown in the next section. Parts list The following list comprises the parts that are required to build the programmable motor controller: Arduino Uno: one unit 1 kilo ohm resistor (brown, black, red, gold): three units A 10-ohm resistor (brown, black, black, gold): one unit A 10-kilo ohm resistor (brown, black, orange, gold): one unit A 100-ohm resistor (brown, black, brown, gold): one unit A 0.01 µF capacitor: one unit An LCD module: one unit A 74LS08 Quad AND Logic Gate Integrated Circuit: one unit A 1N4001 general purpose silicon diode: one unit A DC electric motor (3 V rated): one unit Single-pole double-throw (SPDT) electric switches: two units 1.5 V batteries: two units 3 V battery holder: one unit A breadboard Wires A programmable motor controller block diagram The block diagram of the programmable DC motor controller with a Liquid Crystal Display (LCD) can be imagined as a remote control box with two slide switches and an LCD, as shown in following diagram:   The Remote Control Box provides the control signals to operate a DC motor. This box is not able to provide the right amount of electrical current to directly operate the DC motor. Therefore, a transistor motor driver circuit is needed. This circuit has sufficient current gain hfe to operate a small DC motor. A typical hfe value of 100 is sufficient for the operation of a DC motor. The Enable slide switch is used to set the remote control box to the ready mode. The Program switch allows the DC motor to be set to an ON or OFF operating condition by using a simple selection sequence. The LCD displays the ON or OFF selection prompts that help you operate the DC motor. The remote control box diagram is shown in the next image. The idea behind the concept diagram is to illustrate how a simple programmable motor controller can be built by using basic electrical and electronic components. The Arduino is placed inside the remote control box and wired to the Enable/Program switches and the LCD. External wires are attached to the transistor motor driver, DC motor, and Arduino. The block diagram of the programmable motor controller is an engineering tool that is used to convey a complete product design by using simple graphics. The block diagram also allows ease in planning the breadboard to prototype and test the programmable motor controller in a maker workshop or a laboratory bench. A final observation regarding the block diagram of the programmable motor controller is that the basic computer convention of inputs is on the left, the processor is located in the middle, and the outputs are placed on the right-hand side of the design layout. As shown, the SPDT switches are on the left-hand side, Arduino is located in the middle, and the transistor motor driver with the DC Motor is on the right-hand side of the block diagram. The LCD is shown towards the right of the block diagram because it is an output device. The LCD allows visual selection between the ON/OFF operations of the DC motor by using Program switch. This left-to-right design method allows ease in building the programmable motor controller as well as troubleshooting errors during the testing phase of the project. The block diagram for a programmable motor controller is as follows:   Building the programmable motor controller The block diagram of the programmable motor controller has more circuits than the block diagram of the sound effects machine. As discussed previously, there are a variety of ways to build the (prototype) electronic devices. For instance, they can be built on a Printed Circuit Board (PCB) or an experimenter's/prototype board. The construction base that was used to build this device was a solderless breadboard, which is shown in the next image. The placement of the electronic parts, as shown in the image, are not restricted to the solderless breadboard layout. Rather, it should be used as a guideline. Another method of placing the parts onto the solderless breadboard is to use the block diagram that was shown earlier. This method of arranging the parts that was illustrated in the block diagram allows ease in testing each subcircuit separately. For example, the Program/Enable SPDT switches' subcircuits can be tested by using a DC voltmeter. Placing a DC voltmeter across the Program switch and 1 kilo ohm resistor and toggling switch several times will show a voltage swing between 0 V and +5 V. The same testing method can be carried out on the Enable switch as well. The transistor motor driver circuit is tested by placing a +5 V signal on the base of the 2N3904 NPN transistor. When you apply +5 V to the transistor's base, the DC motor turns on. The final test for the programmable DC motor controller is to adjust the contrast control (10 kilo ohm) to see whether the individual pixels are visible on the LCD. This electrical testing method, which is used to check the programmable DC motor controller is functioning properly, will minimize the electronic I/O wiring errors. Also, the electrical testing phase ensures that all the I/O circuits of the electronics used in the circuit are working properly, thereby allowing the maker to focus on coding the software. Following is the wiring diagram of programmable DC motor controller with the LCD using a solderless breadboard:   As shown in the wiring diagram, the electrical components that are used to build the programmable DC motor controller with the LCD circuit are placed on the solderless breadboard for ease in wiring the Arduino, LCD, and the DC motor. The transistor shown in the preceding image is a 2N3904 NPN device with a pin-out arrangement consisting of an emitter, a base, and a collector respectively. If the transistor pins are wired incorrectly, the DC motor will not turn on. The LCD module is used as a visual display, which allows operating selection of the DC motor. The program slide switch turns the DC motor ON or OFF. Although most of the 16-pin LCD modules have the same electrical pin-out names, consult the manufacturer's datasheet of the available device in hand. There is also a 10 kilo ohm potentiometer to control the LCD's contrast. On wiring the LCD to the Arduino, supply power to the microcontroller board by using the USB cable that is connected to a desktop PC or a notebook. Adjust the 10 kilo ohm potentiometer until a row of square pixels are visible on the LCD. The Program slide switch is used to switch between the ON or OFF operating mode of the DC motor, which is shown on the LCD. The 74LS08 Quad AND gate is a 14-pin Integrated Circuit (IC) that is used to enable the DC motor or get the electronic controller ready to operate the DC motor. Therefore, the Program slide switch must be in the ON position for the electronic controller to operate properly. The 1N4001 diode is used to protect the 2N3904 NPN transistor from peak currents that are stored by the DC motor's winding while turning on the DC motor. When the DC motor is turned off, the 1N4001 diode will direct the peak current to flow through the DC motor's windings, thereby suppressing the transient electrical noise and preventing damage to the transistor. Therefore, it's important to include this electronic component into the design, as shown in the wiring diagram, to prevent electrical damage to the transistor. Besides the wiring diagram, the circuit's schematic diagram will aid in building the programmable motor controller device. Let's build it! In order to build the programmable DC motor controller, follow the following steps: Wire the programmable DC motor controller with the LCD circuit on a solderless breadboard, as shown in the previous image as well as the circuit's schematic diagram that is shown in the next image. Upload the software of the programmable motor controller to the Arduino by using the sketch shown next. Close both the Program and Enables switches. The motor will spin. When you open the Enable switch, the motor stops. The LCD message tells you how one can set the Program switch for an ON and OFF motor control. The Program switch allows you to select between the ON and OFF motor control functions. With the Program switch closed, toggling the Enable switch will turn the motor ON and OFF. Opening the Program switch will prevent the motor from turning on. The next few sections will explain additional details on the I/O interfacing of discrete digital logic circuits and a small DC motor that can be connected to the Arduino. A sketch is a unit of code that is uploaded to and run on an Arduino board. /* * programmable DC motor controller w/LCD allows the user to select ON and OFF operations using a slide switch. To * enable the selected operation another slide switch is used to initiate the selected choice. * Program Switch wired to pin 6. * Output select wired to pin 7. * LCD used to display programming choices (ON or OFF). * created 24 Dec 2012 * by Don Wilcher */ // include the library code: #include <LiquidCrystal.h>   // initialize the library with the numbers of the interface pins LiquidCrystal lcd(12, 11, 5, 4, 3, 2);   // constants won't change. They're used here to // set pin numbers: const int ProgramPin = 6;     // pin number for PROGRAM input control signal const int OUTPin = 7;     // pin number for OUTPUT control signal   // variable will change: int ProgramStatus = 0; // variable for reading Program input status     void setup() { // initialize the following pin as an output: pinMode(OUTPin, OUTPUT);   // initialize the following pin as an input: pinMode(ProgramPin, INPUT);   // set up the LCD's number of rows and columns: lcd.begin(16, 2);   // set cursor for messages andprint Program select messages on the LCD. lcd.setCursor(0,0); lcd.print( "1. ON"); lcd.setCursor(0, 1); lcd.print ( "2. OFF");   }   void loop(){ // read the status of the Program Switch value: ProgramStatus = digitalRead(ProgramPin);   // check if Program select choice is 1.ON. if(ProgramStatus == HIGH) {    digitalWrite(OUTPin, HIGH);   } else{      digitalWrite(OUTPin,LOW); } } The schematic diagram of the circuit that is used to build the programmable DC motor controller and upload the sketch to the Arduino is shown in the following image:   Interfacing a discrete digital logic circuit with Arduino The Enable switch, along with the Arduino, is wired to a discrete digital Integrated Circuit (IC) that is used to turn on the transistor motor driver. The discrete digital IC used to turn on the transistor motor driver is a 74LS08 Quad AND gate. The AND gate provides a high output signal when both the inputs are equal to +5 V. The Arduino provides a high input signal to the 74LS08 AND gate IC based on the following line of code:    digitalWrite(OUTPin, HIGH); The OUTPin constant name is declared in the Arduino sketch by using the following declaration statement: const int OUTPin = 7;     // pin number for OUTPUT control signal The Enable switch is also used to provide a +5V input signal to the 74LS08 AND gate IC. The Enable switch circuit schematic diagram is as follows:   Both the inputs must have the value of logic 1 (+5 V) to make an AND logic gate produce a binary 1 output. In the following section, the truth table of an AND logic gate is given. The table shows all the input combinations along with the resultant outputs. Also, along with the truth table, the symbol for an AND logic gate is provided. A truth table is a graphical analysis tool that is used to test digital logic gates and circuits. By setting the inputs of a digital logic gate to binary 1 (5 V) or binary 0 (0 V), the truth table will show the binary output values of 1 or 0 of the logic gate. The truth table of an AND logic gate is given as follows:   Another tool that is used to demonstrate the operation of the digital logic gates is the Boolean Logic expression. The Boolean Logic expression for an AND logic gate is as follows:   A Boolean Logic expression is an algebraic equation that defines the operation of a logic gate. As shown for the AND gate, the Boolean Logic expression circuit's output, which is denoted by C, is only equal to the product of A and B inputs. Another way of observing the operation of the AND gate, based on its Boolean Logic Expression, is by setting the value of the circuit's inputs to 1. Its output has the same binary bit value. The truth table graphically shows the results of the Boolean Logic expression of the AND gate. A common application of the AND logic gate is the Enable circuit. The output of the Enable circuit will only be turned on when both the inputs are on. When the Enable circuit is wired correctly on the solderless breadboard and is working properly, the transistor driver circuit will turn on the DC motor that is wired to it. The operation of the programmable DC motor controller's Enable circuit is shown in the following truth table:   The basic computer circuit that makes the decision to operate the DC motor is the AND logic gate. The previous schematic diagram of the Enable Switch circuit shows the electrical wiring to the specific pins of the 74LS08 IC, but internally, the AND logic gate is the main circuit component for the programmable DC motor controller's Enable function. Following is the diagram of 74LS08 AND Logic Gate IC:   To test the Enable circuit function of the programmable DC motor controller, the Program switch is required. The schematic diagram of the circuit that is required to wire the Program Switch to the Arduino is shown in the following diagram. The Program and Enable switch circuits are identical to each other because two 5 V input signals are required for the AND logic gate to work properly. The Arduino sketch that was used to test the Enable function of the programmable DC motor is shown in the following diagram:   The program for the discrete digital logic circuit with an Arduino is as follows: // constants won't change. They're used here to // set pin numbers: const int ProgramPin = 6;   // pin number for PROGRAM input control signal const int OUTPin = 7;     // pin number for OUTPUT control signal   // variable will change: int ProgramStatus = 0;       // variable for reading Program input status   void setup() { // initialize the following pin as an output: pinMode(OUTPin, OUTPUT);   // initialize the following pin as an input: pinMode(ProgramPin, INPUT); }   void loop(){   // read the status of the Program Switch value: ProgramStatus = digitalRead(ProgramPin);   // check if Program switch is ON. if(ProgramStatus == HIGH) {    digitalWrite(OUTPin, HIGH);   } else{      digitalWrite(OUTPin,LOW);   } } Connect a DC voltmeter's positive test lead to the D7 pin of the Arduino. Upload the preceding sketch to the Arduino and close the Program and Enable switches. The DC voltmeter should approximately read +5 V. Opening the Enable switch will display 0 V on the DC voltmeter. The other input conditions of the Enable circuit can be tested by using the truth table of the AND Gate that was shown earlier. Although the DC motor is not wired directly to the Arduino, by using the circuit schematic diagram shown previously, the truth table will ensure that the programmed Enable function is working properly. Next, connect the DC voltmeter to the pin 3 of the 74LS08 IC and repeat the truth table test again. The pin 3 of the 74LS08 IC will only be ON when both the Program and Enable switches are closed. If the AND logic gate IC pin generates wrong data on the DC voltmeter when compared to the truth table, recheck the wiring of the circuit carefully and properly correct the mistakes in the electrical connections. When the corrections are made, repeat the truth table test for proper operation of the Enable circuit. Interfacing a small DC motor with a digital logic gate The 74LS08 AND Logic Gate IC provides an electrical interface between reading the Enable switch trigger and the Arduino's digital output pin, pin D7. With both the input pins (1 and 2) of the 74LS08 AND logic gate set to binary 1, the small 14-pin IC's output pin 3 will be High. Although the logic gate IC's output pin has a +5 V source present, it will not be able to turn a small DC motor. The 74LS08 logic gate's sourcing current is not able to directly operate a small DC motor. To solve this problem, a transistor is used to operate a small DC motor. The transistor has sufficient current gain hfe to operate the DC motor. The DC motor will be turned on when the transistor is biased properly. Biasing is a technique pertaining to the transistor circuit, where providing an input voltage that is greater than the base-emitter junction voltage (VBE) turns on the semiconductor device. A typical value for VBE is 700 mV. Once the transistor is biased properly, any electrical device that is wired between the collector and +VCC (collector supply voltage) will be turned on. An electrical current will flow from +VCC through the DC motor's windings and the collector-emitter is grounded. The circuit that is used to operate a small DC motor is called a Transistor motor driver, and is shown in the following diagram:   The Arduino code that is responsible for the operation of the transistor motor driver circuit is as follows: void loop(){   // read the status of the Program Switch value: ProgramStatus = digitalRead(ProgramPin);   // check if Program switch is ON. if(ProgramStatus == HIGH) {    digitalWrite(OUTPin, HIGH);   } else{      digitalWrite(OUTPin,LOW);   } } Although the transistor motor driver circuit was not directly wired to the Arduino, the output pin of the microcontroller prototyping platform indirectly controls the electromechanical part by using the 74LS08 AND logic gate IC. A tip to keep in mind when using the transistors is to ensure that the semiconductor device can handle the current requirements of the DC motor that is wired to it. If the DC motor requires more than 500 mA of current, consider using a power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) instead. A power MOSFET device such as IRF521 (N-Channel) and 520 (N-Channel) can handle up to 1 A of current quite easily, and generates very little heat. The low heat dissipation of the power MOSFET (PMOSFET) makes it more ideal for the operation of high-current motors than a general-purpose transistor. A simple PMOSFET DC motor driver circuit can easily be built with a handful of components and tested on a solderless breadboard, as shown in the following image. The circuit schematic for the solderless breadboard diagram is shown after the breadboard image as well. Sliding the Single Pole-Double Throw (SPDT)switch in one position biases the PMOSFET and turns on the DC motor. Sliding the switch in the opposite direction turns off the PMOSFET and the DC motor.   Once this circuit has been tested on the solderless breadboard, replace the 2N3904 transistor in the programmable DC Motor controller project with the power-efficient PMOSFET component mentioned earlier. As an additional reference, the schematic diagram of the transistor relay driver circuit is as follows:   A sketch of the LCD selection cursor The LCD provides a simple user interface for the operation of a DC motor that is wired to the Arduino-based programmable DC motor controller. The LCD provides the two basic motor operations of ON and OFF. Although the LCD shows the two DC motor operation options, the display doesn't provide any visual indication of selection when using the Program switch. An enhancement feature of the LCD is that it shows which DC motor operation has been selected by adding a selection symbol. The LCD selection feature provides a visual indicator of the DC motor operation that was selected by the Program switch. This selection feature can be easily implemented for the programmable DC motor controller LCD by adding a > symbol to the Arduino sketch. After uploading the original sketch from the Let's build it section of this article, the LCD will display two DC motor operation options, as shown in the following image:   The enhancement concept sketch of the new LCD selection feature is as follows:   The selection symbol points to the DC motor operation that is based on the Program switch position. (For reference, see the schematic diagram of the programmable DC motor controller circuit.) The partially programmable DC motor controller program sketch that comes without an LCD selection feature Comparing the original LCD DC motor operation selection with the new sketch, the differences with regard to the programming features are as follows: void loop(){   // read the status of the Program Switch value: ProgramStatus = digitalRead(ProgramPin);   // check if Program switch is ON. if(ProgramStatus == HIGH) {    digitalWrite(OUTPin, HIGH);   } else{    digitalWrite(OUTPin,LOW);   } } The partially programmable DC motor controller program sketch with an LCD selection feature This code feature will provide a selection cursor on the LCD to choose the programmable DC motor controller operation mode: // set cursor for messages and print Program select messages on the LCD. lcd.setCursor(0,0); lcd.print( ">1.Closed(ON)"); lcd.setCursor(0, 1); lcd.print ( ">2.Open(OFF)");     void loop(){   // read the status of the Program Switch value: ProgramStatus = digitalRead(ProgramPin);   // check if Program select choice is 1.ON. if(ProgramStatus == HIGH) {    digitalWrite(OUTPin, HIGH);      lcd.setCursor(0,0);      lcd.print( ">1.Closed(ON)");      lcd.setCursor(0,1);      lcd.print ( " 2.Open(OFF) ");   } else{      digitalWrite(OUTPin,LOW);      lcd.setCursor(0,1);      lcd.print ( ">2.Open(OFF)");      lcd.setCursor(0,0);      lcd.print( " 1.Closed(ON) ");   } } The most obvious difference between the two partial Arduino sketches is that the LCD selection feature has several lines of code as compared to the original one. As the slide position of the Program switch changes, the LCD's selection symbol instantly moves to the correct operating mode. Although the DC motor can be observed directly, the LCD confirms the operating mode of the electromechanical device. The complete LCD selection sketch is shown in the following section. As a design-related challenge, try displaying an actual arrow for the DC motor operating mode on the LCD. As illustrated in the sketch, an arrow can be built by using the keyboard symbols or the American Standard Code for Information Interchange (ASCII) code. /* * programmable DC motor controller w/LCD allows the user to select ON and OFF operations using a slide switch. To * enable the selected operation another slide switch is used to initiate the selected choice. * Program Switch wired to pin 6. * Output select wired to pin 7. * LCD used to display programming choices (ON or OFF) with selection arrow. * created 28 Dec 2012 * by Don Wilcher */ // include the library code: #include <LiquidCrystal.h>   // initialize the library with the numbers of the interface pins LiquidCrystal lcd(12, 11, 5, 4, 3, 2);   // constants won't change. They're used here to // set pin numbers: const int ProgramPin = 6;     // pin number for PROGRAM input control signal const int OUTPin = 7;       // pin number for OUTPUT control signal     // variable will change: int ProgramStatus = 0;       // variable for reading Program input status     void setup() { // initialize the following pin as an output: pinMode(OUTPin, OUTPUT);   // initialize the following pin as an input: pinMode(ProgramPin, INPUT);   // set up the LCD's number of rows and columns: lcd.begin(16, 2);   // set cursor for messages andprint Program select messages on the LCD. lcd.setCursor(0,0); lcd.print( ">1.Closed(ON)"); lcd.setCursor(0, 1); lcd.print ( ">2.Open(OFF)");   }   void loop(){   // read the status of the Program Switch value: ProgramStatus = digitalRead(ProgramPin);   // check if Program select choice is 1.ON. if(ProgramStatus == HIGH) {    digitalWrite(OUTPin, HIGH);      lcd.setCursor(0,0);      lcd.print( ">1.Closed(ON)");      lcd.setCursor(0,1);      lcd.print ( " 2.Open(OFF) ");   } else{      digitalWrite(OUTPin,LOW);      lcd.setCursor(0,1);      lcd.print ( ">2.Open(OFF)");      lcd.setCursor(0,0);      lcd.print( " 1.Closed(ON) ");   } } Congratulations on building your programmable motor controller device! Summary In this article, a programmable motor controller was built using an Arduino, AND gate, and transistor motor driver. The fundamentals of digital electronics, which include the concepts of Boolean logic expressions and truth tables were explained in the article. The AND gate is not able to control a small DC motor because of the high amount of current that is needed to operate it properly. PMOSFET (IRF521) is able to operate a small DC motor because of its high current sourcing capability. The circuit that is used to wire a transistor to a small DC motor is called a transistor DC motor driver. The DC motor can be turned on or off by using the LCD cursor selection feature of the programmable DC motor controller. Resources for Article: Further resources on this subject: Arduino Development [article] Prototyping Arduino Projects using Python [article] The Arduino Mobile Robot [article]
Read more
  • 0
  • 0
  • 7983

article-image-learning-beaglebone-python-programming
Packt
10 Jul 2015
15 min read
Save for later

Learning BeagleBone Python Programming

Packt
10 Jul 2015
15 min read
In this In this article by Alexander Hiam, author of the book Learning BeagleBone Python Programming, we will go through the initial steps to get your BeagleBone Black set up. By the end of it, you should be ready to write your first Python program. We will cover the following topics: Logging in to your BeagleBone Connecting to the Internet Updating and installing software The basics of the PyBBIO and Adafruit_BBIO libraries (For more resources related to this topic, see here.) Initial setup If you've never turned on your BeagleBone Black, there will be a bit of initial setup required. You should follow the most up-to-date official instructions found at http://beagleboard.org/getting-started, but to summarize, here are the steps: Install the network-over-USB drivers for your PC's operating system. Plug in the USB cable between your PC and BeagleBone Black. Open Chrome or Firefox and navigate to http://192.168.7.2 (Internet Explorer is not fully supported and might not work properly). If all goes well, you should see a message on the web page served up by the BeagleBone indicating that it has successfully connected to the USB network: If you scroll down a little, you'll see a runnable Bonescript example, as in the following screenshot: If you press the run button you should see the four LEDs next to the Ethernet connector on your BeagleBone light up for 2 seconds and then return to their normal function of indicating system and network activity. What's happening here is the Javascript running in your browser is using the Socket.IO (http://socket.io) library to issue remote procedure calls to the Node.js server that's serving up the web page. The server then calls the Bonescript API (http://beagleboard.org/Support/BoneScript), which controls the GPIO pins connected to the LEDs. Updating your Debian image The GNU/Linux distributions for platforms such as the BeagleBone are typically provided as ISO images, which are single file copies of the flash memory with the distribution installed. BeagleBone images are flashed onto a microSD card that the BeagleBone can then boot from. It is important to update the Debian image on your BeagleBone to ensure that it has all the most up-to-date software and drivers, which can range from important security fixes to the latest and greatest features. First, grab the latest BeagleBone Black Debian image from http://beagleboard.org/latest-images. You should now have a .img.xz file, which is an ISO image with XZ compression. Before the image can be flashed from a Windows PC, you'll have to decompress it. Install 7-Zip (http://www.7-zip.org/), which will let you decompress the file from the context menu by right-clicking on it. You can install Win32 Disk Imager (http://sourceforge.net/projects/win32diskimager/) to flash the decompressed .img file to your microSD card. Plug the microSD card you want your BeagleBone Black to boot from into your PC and launch Win32 Disk Imager. Select the drive letter associated with your microSD card; this process will erase the target device, so make sure the correct device is selected: Next, press the browse button and select the decompressed .img file, then press Write: The image burning process will take a few minutes. Once it is complete, you can eject the microSD card, insert it into the BeagleBone Black and boot it up. You can then return to http://192.168.7.2 to make sure the new image was flashed successfully and the BeagleBone is able to boot. Connecting to your BeagleBone If you're running your BeagleBone with a monitor, keyboard, and mouse connected, you can use it like a standard desktop install of Debian. This book assumes you are running your BeagleBone headless (without a monitor). In that case, we will need a way to remotely connect to it. The Cloud9 IDE The BeagleBone Debian images include an instance of the Cloud9 IDE (https://c9.io) running on port 3000. To access it, simply navigate to your BeagleBone Black's IP address with the port appended after a colon, that is, http://192.168.7.2:3000. If it's your first time using Cloud9, you'll see the welcome screen, which lets you customize the look and feel: The left panel lets you organize, create, and delete files in your Cloud9 workspace. When you open a file for editing, it is shown in the center panel, and the lower panel holds a Bash shell and a Javascript REPL. Files and terminal instances can be opened in both the center and bottom panels. Bash instances start in the Cloud9 workspace, but you can use them to navigate anywhere on the BeagleBone's filesystem. If you've never used the Bash shell I'd encourage you to take a look at the Bash manual (https://www.gnu.org/software/bash/manual/), as well as walk through a tutorial or two. It can be very helpful and even essential at times, to be able to use Bash, especially with a platform such as BeagleBone without a monitor connected. Another great use for the Bash terminal in Cloud9 is for running the Python interactive interpreter, which you can launch in the terminal by running python without any arguments: SSH If you're a Linux user, or if you would prefer not to be doing your development through a web browser, you may want to use SSH to access your BeagleBone instead. SSH, or Secure Shell, is a protocol for securely gaining terminal access to a remote computer over a network. On Windows, you can download PuTTY from http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html, which can act as an SSH client. Run PuTTY, make sure SSH is selected, and enter your BeagleBone's IP address and the default SSH port of 22: When you press Open, PuTTY will open an SSH connection to your BeagleBone and give you a terminal window (the first time you connect to your BeagleBone it will ask you if you trust the SSH key; press Yes). Enter root as the username and press Enter to log in; you will be dropped into a Bash terminal: As in the Cloud9 IDE's terminals, from here, you can use the Linux tools to move around the filesystem, create and edit files, and so on, and you can run the Python interactive interpreter to try out and debug Python code. Connecting to the Internet Your BeagleBone Black won't be able to access the Internet with the default network-over-USB configuration, but there are a couple ways that you can connect your BeagleBone to the Internet. Ethernet The simplest option is to connect the BeagleBone to your network using an Ethernet cable between your BeagleBone and your router or a network switch. When the BeagleBone Black boots with an Ethernet connection, it will use DHCP to automatically request an IP address and register on your network. Once you have your BeagleBone registered on your network, you'll be able to log in to your router's interface from your web browser (usually found at http://192.168.1.1 or http://192.168.2.1) and find out the IP address that was assigned to your BeagleBone. Refer to your router's manual for more information. The current BeagleBone Black Debian images are configured to use the hostname beaglebone, so it should be pretty easy to find in your router's client list. If you are using a network on which you have no way of accessing this information through the router, you could use a tool such as Fing (http://www.overlooksoft.com) for Android or iPhone to scan the network and list the IP addresses of every device on it. Since this method results in your BeagleBone being assigned a new IP address, you'll need to use the new address to access the Getting Started pages and the Cloud9 IDE. Network forwarding If you don't have access to an Ethernet connection, or it's just more convenient to have your BeagleBone connected to your computer instead of your router, it is possible to forward your Internet connection to your BeagleBone over the USB network. On Windows, open your Network Connections window by navigating to it from the Control Panel or by opening the start menu, typing ncpa.cpl, and pressing Enter. Locate the Linux USB Ethernet network interface and take note of the name; in my case, its Local Area Network 4. This is the network interface used to connect to your BeagleBone: First, right-click on the network interface that you are accessing the Internet through, in my case, Wireless Network Connection, and select Properties. On the Sharing tab, check Allow other network users to connect through this computer's Internet connection, and select your BeagleBone's network interface from the dropdown: After pressing OK, Windows will assign the BeagleBone interface a static IP address, which will conflict with the static IP address of http://192.168.7.2 that the BeagleBone is configured to request on the USB network interface. To fix this, you'll want to right-click the Linux USB Ethernet interface and select Properties, then highlight Internet Protocol Version 4 (TCP/IPv4) and click on Properties: Select Obtain IP address automatically and click on OK; Your Windows PC is now forwarding its Internet connection to the BeagleBone, but the BeagleBone is still not configured properly to access the Internet. The problem is that the BeagleBone's IP routing table doesn't include 192.168.7.1 as a gateway, so it doesn't know the network path to the Internet. Access a Cloud9 or SSH terminal, and use the route tool to add the gateway, as shown in the following command: # route add default gw 192.168.7.1 Your BeagleBone should now have Internet access, which you can test by pinging a website: root@beaglebone:/var/lib/cloud9# ping -c 3 graycat.io PING graycat.io (198.100.47.208) 56(84) bytes of data. 64 bytes from 198.100.47.208.static.a2webhosting.com (198.100.47.208): icmp_req=1 ttl=55 time=45.6 ms 64 bytes from 198.100.47.208.static.a2webhosting.com (198.100.47.208): icmp_req=2 ttl=55 time=45.6 ms 64 bytes from 198.100.47.208.static.a2webhosting.com (198.100.47.208): icmp_req=3 ttl=55 time=46.0 ms   --- graycat.io ping statistics --- 3 packets transmitted, 3 received, 0% packet loss, time 2002ms rtt min/avg/max/mdev = 45.641/45.785/46.035/0.248 ms The IP routing will be reset at boot up, so if you reboot your BeagleBone, the Internet connection will stop working. This can be easily solved by using Cron, a Linux tool for scheduling the automatic running of commands. To add the correct gateway at boot, you'll need to edit the crontab file with the following command: # crontab –e This will open the crontab file in nano, which is a command line text editor. We can use the @reboot keyword to schedule the command to run after each reboot: @reboot /sbin/route add default gw 192.168.7.1 Press Ctrl + X to exit nano, then press Y, and then Enter to save the file. Your forwarded Internet connection should now remain after rebooting. Using the serial console If you are unable to use a network connection to your BeagleBone Black; for instance, if your network is too slow for Cloud9 or you can't find the BeagleBone's IP address, there is still hope! The BeagleBone Black includes a 6-pin male connector; labeled J1, right next to the P9 expansion header (we'll learn more about the P8 and P9 expansion headers soon!). You'll need a USB to 3.3 V TTL serial converter, for example, from Adafruit http://www.adafruit.com/products/70 or Logic Supply http://www.logicsupply.com/components/beaglebone/accessories/ls-ttl3vt. You'll need to download and install the FTDI virtual COM port driver for your operating system from http://www.ftdichip.com/Drivers/VCP.htm, then plug the connector into the J1 header such that the black wire lines up with the header's pin 1 indicator, as shown in the following screenshot: You can then use your favorite serial port terminal emulator, such as PuTTY or CoolTerm (http://freeware.the-meiers.org), and configure the serial port for a baud rate of 115200 with 1 stop bit and no parity. Once connected, press Enter and you should see a login prompt. Enter the user name root and you'll drop into a Bash shell. If you only need the console connection to find your IP address, you can do so using the following command: # ip addr Updating your software If this is the first time you've booted your BeagleBone Black, or if you've just flashed a new image, it's best to start by ensuring your installed software packages are all up to date. You can do so using Debian's apt package manager: # apt-get update && apt-get upgrade This process might take a few minutes. Next, use the pip Python package manager to update to the latest versions of the PyBBIO and Adafruit_BBIO libraries: # pip install --upgrade PyBBIO Adafruit_BBIO As both libraries are currently in active development, it's worth running this command from time to time to make sure you have all the latest features. The PyBBIO library The PyBBIO library was developed with Arduino users in mind. It emulates the structure of an Arduino (http://arduino.cc) program, as well as the Arduino API where appropriate. If you've never seen an Arduino program, it consists of a setup() function, which is called once when the program starts, and a loop() function, which is called repeatedly until the end of time (or until you turn off the Arduino). PyBBIO accomplishes a similar structure by defining a run() function that is passed two callable objects, one that is called once when the program starts, and another that is called repeatedly until the program stops. So the basic PyBBIO template looks like this: from bbio import *   def setup(): pinMode(GPIO1_16, OUTPUT)   def loop(): digitalWrite(GPIO1_16, HIGH) delay(500) digitalWrite(GPIO1_16, LOW) delay(500)   run(setup, loop) The first line imports everything from the PyBBIO library (the Python package is installed with the name bbio). Then, two functions are defined, and they are passed to run(), which tells the PyBBIO loop to begin. In this example, setup() will be called once, which configures the GPIO pin GPIO1_16 as a digital output with the pinMode() function. Then, loop() will be called until the PyBBIO loop is stopped, with each digitalWrite() call setting the GPIO1_16 pin to either a high (on) or low (off) state, and each delay() call causing the program to sleep for 500 milliseconds. The loop can be stopped by either pressing Ctrl + C or calling the stop() function. Any other error raised in your program will be caught, allowing PyBBIO to run any necessary cleanup, then it will be reraised. Don't worry if the program doesn't make sense yet, we'll learn about all that soon! Not everyone wants to use the Arduino style loop, and it's not always suitable depending on the program you're writing. PyBBIO can also be used in a more Pythonic way, for example, the above program can be rewritten as follows: import bbio   bbio.pinMode(bbio.GPIO1_16, bbio.OUTPUT) while True: bbio.digitalWrite(bbio.GPIO1_16, bbio.HIGH) bbio.delay(500) bbio.digitalWrite(bbio.GPIO1_16, bbio.LOW) bbio.delay(500) This still allows the bbio API to be used, but it is kept out of the global namespace. The Adafruit_BBIO library The Adafruit_BBIO library is structured differently than PyBBIO. While PyBBIO is structured such that, essentially, the entire API is accessed directly from the first level of the bbio package; Adafruit_BBIO instead has the package tree broken up by a peripheral subsystem. For instance, to use the GPIO API you have to import the GPIO package: from Adafruit_BBIO import GPIO Otherwise, to use the PWM API you would import the PWM package: from Adafruit_BBIO import PWM This structure follows a more standard Python library model, and can also save some space in your program's memory because you're only importing the parts you need (the difference is pretty minimal, but it is worth thinking about). The same program shown above using PyBBIO could be rewritten to use Adafruit_BBIO: from Adafruit_BBIO import GPIO import time   GPIO.setup("GPIO1_16", GPIO.OUT) try: while True:    GPIO.output("GPIO1_16", GPIO.HIGH)    time.sleep(0.5)    GPIO.output("GPIO1_16", GPIO.LOW)    time.sleep(0.5) except KeyboardInterrupt: GPIO.cleanup() Here the GPIO.setup() function is configuring the ping, and GPIO.output() is setting the state. Notice that we needed to import Python's built-in time library to sleep, whereas in PyBBIO we used the built-in delay() function. We also needed to explicitly catch KeyboardInterrupt (the Ctrl + C signal) to make sure all the cleanup is run before the program exits, whereas this is done automatically by PyBBIO. Of course, this means that you have much more control about when things such as initialization and cleanup happen using Adafruit_BBIO, which can be very beneficial depending on your program. There are some trade-offs, and the library you use should be chosen based on which model is better suited for your application. Summary In this article, you learned how to login to the BeagleBone Black, get it connected to the Internet, and update and install the software we need. We also looked at the basic structure of programs using the PyBBIO and Adafruit_BBIO libraries, and talked about some of the advantages of each. Resources for Article: Further resources on this subject: Overview of Chips [article] Getting Started with Electronic Projects [article] Beagle Boards [article]
Read more
  • 0
  • 0
  • 11546
Unlock access to the largest independent learning library in Tech for FREE!
Get unlimited access to 7500+ expert-authored eBooks and video courses covering every tech area you can think of.
Renews at $19.99/month. Cancel anytime
article-image-whats-bitbake-all-about
Packt
08 Jul 2015
7 min read
Save for later

What's BitBake All About?

Packt
08 Jul 2015
7 min read
In this article by H M Irfan Sadiq, the author of the book Using Yocto Project with BeagleBone Black, we will move one step ahead by detailing different aspects of the basic engine behind Yocto Project, and other similar projects. This engine is BitBake. Covering all the various aspects of BitBake in one article is not possible; it will require a complete book. We will familiarize you as much as possible with this tool. We will cover the following topics in this article: Legacy tools and BitBake Execution of BitBake (For more resources related to this topic, see here.) Legacy tools and BitBake This discussion does not intend to invoke any religious row between other alternatives and BitBake. Every step in the evolution has its own importance, which cannot be denied, and so do other available tools. BitBake was developed keeping in mind the Embedded Linux Development domain. So, it tried to solve the problems faced in this core area, and in my opinion, it addresses these in the best way till date. You might get the same output using other tools, such as Buildroot, but the flexibility and ease provided by BitBake in this domain is second to none. The major difference is in addressing the problem. Legacy tools are developed considering packages in mind, but BitBake evolved to solve the problems faced during the creation of BSPs, or embedded distributions. Let's go through the challenges faced in this specific domain and understand how BitBake helps us face them. Cross-compilation BitBake takes care of cross compilation. You do not have to worry about it for each package you are building. You can use the same set of packages and build for different platforms seamlessly. Resolving inter-package dependencies This is the real pain of resolving dependencies of packages on each other and fulfilling them. In this case, we need to specify the different dependency types available, and BitBake takes care of them for us. We can handle both build and runtime dependencies. Variety of target distribution BitBake supports a variety of target distribution creations. We can define a full new distribution of our own, by choosing package management, image types, and other artifacts to fulfill our requirements. Coupling to build system BitBake is not very dependent on the build system we use to build our target images. We don't use libraries and tools installed on the system; we build their native versions and use them instead. This way, we are not dependent on the build system's root filesystem. Variety of build systems distros Since BitBake is very loosely coupled to the build system's distribution type, it's very easy to use on various distributions. Variety of architecture We have to support different architectures. We don't have to modify our recipes for each package. We can write our recipes so that features, parameters, and flags are picked up conditionally. Exploit parallelism For the simplest projects, we have to build images and do more than a thousand tasks. These tasks require us to use the full power available to us, whether they are computational or related to memory. BitBake's architecture supports us in this regard, using its scheduler to run as many tasks in parallel as it can, or as we configure. Also, when we say task, it should not be confused with package, but it is a part of package. A package can contain many tasks, (fetch, compile, configure, package, populate_sysroot, and so on), and all these can run in parallel. Easy to use, extend, and collaborate Keeping and relying on metadata keeps things simple and configurable. Almost nothing is hard coded. Thus, we can configure things according to our requirements. Also, BitBake provides us with a mechanism to reuse things that are already developed. We can keep our metadata structured, so that it gets applied/extended conditionally. You will learn these tricks when we will explore layers. BitBake execution To get us to a successful package or image, BitBake performs some steps that we need to go through to get an understanding of the workflow. In certain cases, some of these steps can be avoided; but we are not discussing such cases, considering them as corner cases. For details on these, we should refer to the BitBake user manual. Parsing metadata When we invoke the BitBake command to build our image, the first thing it does is parse our base configuration metadata. This metadata consists of build_bb/conf/bblayers.conf, multiple layer/conf/layer.conf, and poky/meta/conf/bitbake.conf. This data can be of the following types: Configuration data Class data Recipes Key variables BBFILES and BBPATH, which are constructed from the layer.conf file. Thus, the constructed BBPATH variable is used to locate configuration files under conf/ and class files under class/ directories. The BBFILES variable is used to find recipe files (.bb and .bbappend). bblayers.conf is used to set these variables. Next, the bitbake.conf file is parsed. If there is no bblayers.conf file, it is assumed that the user has set BBFILES and BBPATH directly in the environment. After having dealt with configuration files, class files inclusion and parsing are taken care of. These class files are specified using the INHERIT variable. Next, BitBake will use the BBFILES variable to construct a list of recipes to parse, along with any append files. Thus, after parsing, recipe values for various variables are stored into datastore. After the completion of a recipe parsing BitBake has: A list of tasks that the recipe has defined A set of data consisting of keys and values Dependency information of the tasks Preparing tasklist BitBake starts looking through the PROVIDES set in recipe files. The PROVIDES set defaults to the recipe name, and we can define multiple values to it. We can have multiple recipes providing a similar package. This task is accomplished by setting PROVIDES in the recipes. While actually making such recipes part of the build, we have to define PRREFERED_PROVIDER_foo so that our specific recipe foo can be used. We can do this in multiple locations. In the case of kernels, we use it in the manchin.conf file. BitBake iterates through the list of targets it has to build and resolves them, along with their dependencies. If PRREFERED_PROVIDER is not set and multiple versions of a package exist, BitBake will choose the highest version. Each target/recipe has multiple tasks, such as fetch, unpack, configure, and compile. BitBake considers each of these tasks as independent units to exploit parallelism in a multicore environment. Although these tasks are executed sequentially for a single package/recipe, for multiple packages, they are run in parallel. We may be compiling one recipe, configuring the second, and unpacking the third in parallel. Or, may be at the start, eight packages are all fetching their sources. For now, we should know the dependencies between tasks that are defined using DEPENDS and RDEPENDS. In DEPENDS, we provide the dependencies that our package needs to build successfully. So, BitBake takes care of building these dependencies before our package is built. RDEPENDS are the dependencies that are required for our package to execute/run successfully on the target system. So, BitBake takes care of providing these dependencies on the target's root filesystem. Executing tasks Tasks can be defined using the shell syntax or Python. In the case of shell tasks, a shell script is created under a temporary directory as run.do_taskname.pid and then, it is executed. The generated shell script contains all the exported variables and the shell functions, with all the variables expanded. Output from the task is saved in the same directory with log.do_taskname.pid. In the case of errors, BitBake shows the full path to this logfile. This is helpful for debugging. Summary In this article, you learned the goals and problem areas that BitBake has considered, thus making itself a unique option for Embedded Linux Development. You also learned how BitBake actually works. Resources for Article: Further resources on this subject: Learning BeagleBone [article] Baking Bits with Yocto Project [article] The BSP Layer [article]
Read more
  • 0
  • 0
  • 4885

article-image-editors-and-ides
Packt
08 Jul 2015
10 min read
Save for later

Editors and IDEs

Packt
08 Jul 2015
10 min read
In this article by Daniel Blair, the author of the book Learning Banana Pi, you are going to learn about some editors and the programming languages that are available on the Pi and Linux. These tools will help you write the code that will interact with the hardware through GPIO and on the Pi as a server. (For more resources related to this topic, see here.) Choosing your editor There are many different integrated development environments (generally abbreviated as IDEs) to choose from on Linux. When working on the Banana Pi, you're limited to the software that will run on an ARM-based CPU. Hence, options such as Sublime Text are not available. Some options that you may be familiar with are available for general purpose code editing. Some tools are available for the command line, while others are GUI tools. So, depending on whether you have a monitor or not, you will want to choose an appropriate tool. The following screenshot shows some JavaScript being edited via nano on the command line: Command-line editors The command line is a powerful tool. If you master it, you will rarely need to leave it. There are several editors available for the command line. There has been an ongoing war between the users of two editors: GNU Emacs and Vim. There are many editors like nano (which is my preference), but the war tends to be between the two aforementioned editors. The Emacs editor This is my least favorite command-line editor (just my preference). Emacs is a GNU-flavored editor for the command line. It is often installed by default, but you can easily install it if it is missing by running a quick command, as follows: sudo apt-get install emacs Now, you can edit a file via the CLI by using the following code: emacs <command-line arguments> <your file> The preceding code will open the file in Emacs for you to edit. You can also use this to create new files. You can save and close the editor with a couple of key combinations: Ctrl + X and Ctrl + S Ctrl + X and Ctrl + C Thus, your document will be saved and closed. The Vim editor Vim is actually an extension of Vi, and it is functionally the same thing. Vim is a fine editor. Many won't personally go out of their way to not use it. However, people do find it a bit difficult to remember all the commands. If you do get good at it, though, you can code very quickly. You can install Vim with the command line: sudo apt-get install vim Also, there is a GUI version available that allows interaction with the mouse; this is functionally the same program as the Vim command line. You don't have to be confined to the terminal window. You can install it with an identical command: sudo apt-get install vim-gnome You can edit files easily with Vim via the command line for both Vim and Vim-Gnome, as follows: vim <your file> gvim <your file> The gnome version will open the file in a window There is a handy tutorial that you can use to learn the commands of Vim. You can run the tutorial with the help of the following command: vimtutor This tutorial will teach you how to run this editor, which is awesome because the commands can be a bit complicated at first. The following screenshot shows Vim editing the file that we used earlier: The nano editor The nano editor is my favorite editor for the command line. This is probably because it was the first editor that I was exposed to when I started to learn Linux and experiment with the servers and eventually, the Raspberry Pi and Banana Pi. The nano editor is generally considered the easiest to use and is installed by default on the Banana Pi images. If, for some reason, you need to install it, you can get it quickly with the help of the following command: sudo apt-get install nano The editor is easy to use. It comes with several commands that you will use frequently. To save and close the editor, use the following key combinations: Ctrl + O Ctrl + X You can get help at any time by pressing Ctrl + G. Graphic editors With the exception of gVim, all the editors we just talked about live on the command line. If you are more accustomed to graphical tools, you may be more comfortable with a full-featured IDE. There are a couple of choices in this regard that you may be familiar with. These tools are a little heavier than the command-line tools because you will need to not only run the software, but also render the window. This is not as much of a big deal on the Banana Pi as it is on the Raspberry Pi, because we have more RAM to play with. However, if you have a lot of programs running already, it might cause some performance issues. Eclipse Eclipse is a very popular IDE that is available for everything. You can use it to develop all kinds of systems and use all kinds of programming languages. This is a tool that can be used to do professional development. There are a lot of plugins available in this IDE. It is also used to develop apps for Android (although Android Studio is also available now). Eclipse is written in Java. Hence, in order to make it work, you will require a Java Runtime Environment. The Banana Pi should come equipped with the Java development and runtime environments. If this is not the case, they are not difficult to install. In order to grab the proper version of Eclipse and avoid browsing all the specific versions on the website, you can just install it via the command line by entering the following code: sudo apt-get install eclipse Once Eclipse is installed, you will find it in the application menu under programming tools. The following screenshot shows the Eclipse IDE running on the Banana Pi: The Geany IDE Geany is a lighter weight IDE than Eclipse although the former is not quite fully featured. It is a clean UI that can be customized and used to write a lot of different programming languages. Geany was one of the first IDEs I ever used when first exploring Linux when I was a kid. Geany does not come preinstalled on the Banana Pi images, but it is easy to get via the command line: sudo apt-get install geany Depending on what you plan to do code-wise on the Banana Pi, Geany may be your best bet. It is GUI-based and offers quite a bit of functionality. However, it is a lot faster to load than Eclipse. It may seem familiar for Windows users, and they might find it easier to operate since it resembles Windows software. The following screenshot shows Geany on Linux: Both of these editors, Geany and Eclipse, are not specific to a particular programming language, but they both are slightly better for certain languages. Geany tends to be better for web languages such as HTML, PHP, JavaScript, and CSS, while Eclipse tends to be better for compiled languages such as C++, Go, and Java as well as PHP and Ruby with plugins. If you plan to write scripts or languages that are intended to be run from the command line such as Bash, Ruby, or Python, you may want to stick to the command line and use an editor such as Vim or nano. It is worth your time to play around with the editors and find your preferences. Web IDEs In addition to the command line and GUI editors, there are a couple of web-based IDEs. These essentially turn your Pi into a code server, which allows you to run and even execute certain types of code on an IDE written in web languages. These IDEs are great for learning code, but they are not really replacements for the solutions that were listed previously. Google Coder Google Coder is an educational web IDE that was released as an open source project by Google for the Raspberry Pi. Although there is a readily available image for the Raspberry Pi, we can manually install it for the Banana Pi. The following screenshot shows the Google Coder's interface: The setup is fairly straightforward. We will clone the Git repo and install it with Node.js. If you don't have Git and Node.js installed, you can install them with a quick command in the terminal, as follows: sudo apt-get install nodejs npm git Once it is installed, we can clone the coder repo by using the following code: git clone https://github.com/googlecreativelab/coder After it is cloned, we will move into the directory and install it with the help of the following code: cd ~/coder/coder-base/ npm install It may take several minutes to install, even on the Banana Pi. Next, we will edit the config.js file, which will be used to configure the ports and IP addresses. nano config.js The preceding code will reveal the contents of the file. Change the top values to match the following: exports.listenIP = '127.0.0.1'; exports.listenPort = '8081'; exports.httpListenPort = '8080'; exports.cacheApps = true; exports.httpVisiblePort = '8080'; exports.httpsVisiblePort = '8081'; After you change the settings you need, run a server by using Node.js: nodejs server.js You should now be able to connect to the Pi in a browser either on it or on another computer and use Coder. Coder is an educational tool with a lot of different built-in tutorials. You can use Coder to learn JavaScript, CSS, HTML, and jQuery. Adafruit WebIDE Adafruit has developed its own Web IDE, which is designed to run on the Raspberry Pi and BeagleBone. Since we are using the Banana Pi, it will only run better. This IDE is designed to work with Ruby, Python, and JavaScript, to name a few. It includes a terminal via which you can send commands to the Pi from the browser. It is an interesting tool if you wish to learn how to code. The following screenshot shows the interface of the WebIDE: The installation of WebIDE is very simple compared to that of Google Coder, which took several steps. We will just run one command: curl https://raw.githubusercontent.com/adafruit/Adafruit-WebIDE/alpha/scripts/install.sh | sudo sh After a few minutes, you will see an output that indicates that the server is starting. You will be able to access the IDE just like Google Coder—through a browser from another computer or from itself. It should be noted that you will be required to create a free Bit Bucket account to use this software. Summary In this article, we explored several different programming languages, command-line tools, graphical editors, and even some web IDEs. These tools are valuable for all kinds of projects that you may be working on. Resources for Article: Further resources on this subject: Prototyping Arduino Projects using Python [article] Raspberry Pi and 1-Wire [article] The Raspberry Pi and Raspbian [article]
Read more
  • 0
  • 0
  • 3324

article-image-virtualization
Packt
07 Jul 2015
37 min read
Save for later

Learning Embedded Linux Using Yocto: Virtualization

Packt
07 Jul 2015
37 min read
In this article by Alexandru Vaduva, author of the book Learning Embedded Linux Using the Yocto Project, you will be presented with information about various concepts that appeared in the Linux virtualization article. As some of you might know, this subject is quite vast and selecting only a few components to be explained is also a challenge. I hope my decision would please most of you interested in this area. The information available in this article might not fit everyone's need. For this purpose, I have attached multiple links for more detailed descriptions and documentation. As always, I encourage you to start reading and finding out more, if necessary. I am aware that I cannot put all the necessary information in only a few words. In any Linux environment today, Linux virtualization is not a new thing. It has been available for more than ten years and has advanced in a really quick and interesting manner. The question now does not revolve around virtualization as a solution for me, but more about what virtualization solutions to deploy and what to virtualize. (For more resources related to this topic, see here.) Linux virtualization The first benefit everyone sees when looking at virtualization is the increase in server utilization and the decrease in energy costs. Using virtualization, the workloads available on a server are maximized, which is very different from scenarios where hardware uses only a fraction of the computing power. It can reduce the complexity of interaction with various environments and it also offers an easier-to-use management system. Today, working with a large number of virtual machines is not as complicated as interaction with a few of them because of the scalability most tools offer. Also, the time of deployment has really decreased. In a matter of minutes, you can deconfigure and deploy an operating system template or create a virtual environment for a virtual appliance deploy. One other benefit virtualization brings is flexibility. When a workload is just too big for allocated resources, it can be easily duplicated or moved on another environment that suit its needs better on the same hardware or on a more potent server. For a cloud-based solution regarding this problem, the sky is the limit here. The limit may be imposed by the cloud type on the basis of whether there are tools available for a host operating system. Over time, Linux was able to provide a number of great choices for every need and organization. Whether your task involves server consolidation in an enterprise data centre, or improving a small nonprofit infrastructure, Linux should have a virtualization platform for your needs. You simply need to figure out where and which project you should chose. Virtualization is extensive, mainly because it contains a broad range of technologies, and also since large portions of the terms are not well defined. In this article, you will be presented with only components related to the Yocto Project and also to a new initiative that I personally am interested in. This initiative tries to make Network Function Virtualization (NFV) and Software Defined Networks (SDN) a reality and is called Open Platform for NFV (OPNFV). It will be explained here briefly. SDN and NFV I have decided to start with this topic because I believe it is really important that all the research done in this area is starting to get traction with a number of open source initiatives from all sorts of areas and industries. Those two concepts are not new. They have been around for 20 years since they were first described, but the last few years have made possible it for them to resurface as real and very possible implementations. The focus of this article will be on the NFV article since it has received the most amount of attention, and also contains various implementation proposals. NFV NFV is a network architecture concept used to virtualize entire categories of network node functions into blocks that can be interconnected to create communication services. It is different from known virtualization techniques. It uses Virtual Network Functions (VNF) that can be contained in one or more virtual machines, which execute different processes and software components available on servers, switches, or even a cloud infrastructure. A couple of examples include virtualized load balancers, intrusion detected devices, firewalls, and so on. The development product cycles in the telecommunication industry were very rigorous and long due to the fact that the various standards and protocols took a long time until adherence and quality meetings. This made it possible for fast moving organizations to become competitors and made them change their approach. In 2013, an industry specification group published a white paper on software-defined networks and OpenFlow. The group was part of European Telecommunications Standards Institute (ETSI) and was called Network Functions Virtualisation. After this white paper was published, more in-depth research papers were published, explaining things ranging from terminology definitions to various use cases with references to vendors that could consider using NFV implementations. ETSI NFV The ETSI NFV workgroup has appeared useful for the telecommunication industry to create more agile cycles of development and also make it able to respond in time to any demands from dynamic and fast changing environments. SDN and NFV are two complementary concepts that are key enabling technologies in this regard and also contain the main ingredients of the technology that are developed by both telecom and IT industries. The NFV framework consist of six components: NFV Infrastructure (NFVI): It is required to offer support to a variety of use cases and applications. It comprises of the totality of software and hardware components that create the environment for which VNF is deployed. It is a multitenant infrastructure that is responsible for the leveraging of multiple standard virtualization technologies use cases at the same time. It is described in the following NFV Industry Specification Groups (NFV ISG) documents: NFV Infrastructure Overview NFV Compute NFV Hypervisor Domain NFV Infrastructure Network Domain The following image presents a visual graph of various use cases and fields of application for the NFV Infrastructure NFV Management and Orchestration (MANO): It is the component responsible for the decoupling of the compute, networking, and storing components from the software implementation with the help of a virtualization layer. It requires the management of new elements and the orchestration of new dependencies between them, which require certain standards of interoperability and a certain mapping. NFV Software Architecture: It is related to the virtualization of the already implemented network functions, such as proprietary hardware appliances. It implies the understanding and transition from a hardware implementation into a software one. The transition is based on various defined patterns that can be used in a process. NFV Reliability and Availability: These are real challenges and the work involved in these components started from the definition of various problems, use cases, requirements, and principles, and it has proposed itself to offer the same level of availability as legacy systems. It relates to the reliability component and the documentation only sets the stage for future work. It only identifies various problems and indicates the best practices used in designing resilient NFV systems. NFV Performance and Portability: The purpose of NFV, in general, is to transform the way it works with networks of future. For this purpose, it needs to prove itself as wordy solution for industry standards. This article explains how to apply the best practices related to performance and portability in a general VNF deployment. NFV Security: Since it is a large component of the industry, it is concerned about and also dependent on the security of networking and cloud computing, which makes it critical for NFV to assure security. The Security Expert Group focuses on those concerns. An architectural of these components is presented here: After all the documentation is in place, a number of proof of concepts need to be executed in order to test the limitation of these components and accordingly adjust the theoretical components. They have also appeared to encourage the development of the NFV ecosystem. SDN Software-Defined Networking (SDN) is an approach to networking that offers the possibility to manage various services using the abstraction of available functionalities to administrators. This is realized by decoupling the system into a control plane and data plane and making decisions based on the network traffic that is sent; this represents the control plane realm, and where the traffic is forwarded is represented by the data plane. Of course, some method of communication between the control and data plane is required, so the OpenFlow mechanism entered into the equation at first; however other components could as well take its place. The intention of SDN was to offer an architecture that was manageable, cost-effective, adaptable, and dynamic, as well as suitable for the dynamic and high-bandwidth scenarios that are available today. The OpenFlow component was the foundation of the SDN solution. The SDN architecture permitted the following: Direct programming: The control plane is directly programmable because it is completely decoupled by the data plane. Programmatically configuration: SDN permitted management, configuration, and optimization of resources though programs. These programs could also be written by anyone because they were not dependent on any proprietary components. Agility: The abstraction between two components permitted the adjustment of network flows according to the needs of a developer. Central management: Logical components could be centered on the control plane, which offered a viewpoint of a network to other applications, engines, and so on. Opens standards and vendor neutrality: It is implemented using open standards that have simplified the SDN design and operations because of the number of instructions provided to controllers. This is smaller compared to other scenarios in which multiple vendor-specific protocols and devices should be handled. Also, meeting market requirements with traditional solutions would have been impossible, taking into account newly emerging markets of mobile device communication, Internet of Things (IoT), Machine to Machine (M2M), Industry 4.0, and others, all require networking support. Taking into consideration the available budgets for further development in various IT departments, were all faced to make a decision. It seems that the mobile device communication market all decided to move toward open source in the hope that this investment would prove its real capabilities, and would also lead to a brighter future. OPNFV The Open Platform for the NFV Project tries to offer an open source reference platform that is carrier-graded and tightly integrated in order to facilitate industry peers to help improve and move the NFV concept forward. Its purpose is to offer consistency, interoperability, and performance among numerous blocks and projects that already exist. This platform will also try to work closely with a variety of open source projects and continuously help with integration, and at the same time, fill development gaps left by any of them. This project is expected to lead to an increase in performance, reliability, serviceability, availability, and power efficiency, but at the same time, also deliver an extensive platform for instrumentation. It will start with the development of an NFV infrastructure and a virtualized infrastructure management system where it will combine a number of already available projects. Its reference system architecture is represented by the x86 architecture. The project's initial focus point and proposed implementation can be consulted in the following image. From this image, it can be easily seen that the project, although very young since it was started in November 2014, has had an accelerated start and already has a few implementation propositions. There are already a number of large companies and organizations that have started working on their specific demos. OPNFV has not waited for them to finish and is already discussing a number of proposed project and initiatives. These are intended both to meet the needs of their members as well as assure them of the reliability various components, such as continuous integration, fault management, test-bed infrastructure, and others. The following figure describes the structure of OPNFV: The project has been leveraging as many open source projects as possible. All the adaptations made to these project can be done in two places. Firstly, they can be made inside the project, if it does not require substantial functionality changes that could cause divergence from its purpose and roadmap. The second option complements the first and is necessary for changes that do not fall in the first category; they should be included somewhere in the OPNFV project's codebase. None of the changes that have been made should be up streamed without proper testing within the development cycle of OPNFV. Another important element that needs to be mentioned is that OPNFV does not use any specific or additional hardware. It only uses available hardware resources as long the VI-Ha reference point is supported. In the preceding image, it can be seen that this is already done by having providers, such as Intel for the computing hardware, NetApp for storage hardware, and Mellanox for network hardware components. The OPNFV board and technical steering committee have a quite large palette of open source projects. They vary from Infrastructure as a Service (IaaS) and hypervisor to the SDN controller and the list continues. This only offers the possibility for a large number of contributors to try some of the skills that maybe did not have the time to work on, or wanted to learn but did not have the opportunity to. Also, a more diversified community offers a broader view of the same subject. There are a large variety of appliances for the OPNFV project. The virtual network functions are diverse for mobile deployments where mobile gateways (such as Serving Gateway (SGW), Packet Data Network Gateway (PGW), and so on) and related functions (Mobility Management Entity (MME) and gateways), firewalls or application-level gateways and filters (web and e-mail traffic filters) are used to test diagnostic equipment (Service-Level Agreement (SLA) monitoring). These VNF deployments need to be easy to operate, scale, and evolve independently from the type of VNF that is deployed. OPNFV sets out to create a platform that has to support a set of qualities and use-cases as follows: A common mechanism is needed for the life-cycle management of VNFs, which include deployment, instantiation, configuration, start and stop, upgrade/downgrade, and final decommissioning A consistent mechanism is used to specify and interconnect VNFs, VNFCs, and PNFs; these are indepedant of the physical network infrastructure, network overlays, and so on, that is, a virtual link A common mechanism is used to dynamically instantiate new VNF instances or decommission sufficient ones to meet the current performance, scale, and network bandwidth needs A mechanism is used to detect faults and failure in the NFVI, VIM, and other components of an infrastructure as well as recover from these failures A mechanism is used to source/sink traffic from/to a physical network function to/from a virtual network function NFVI as a Service is used to host different VNF instances from different vendors on the same infrastructure There are some notable and easy-to-grasp use case examples that should be mentioned here. They are organized into four categories. Let's start with the first category: the Residential/Access category. It can be used to virtualize the home environment but it also provides fixed access to NFV. The next one is data center: it has the virtualization of CDN and provides use cases that deal with it. The mobile category consists of the virtualization of mobile core networks and IMS as well as the virtualization of mobile base stations. Lastly, there are cloud categories that include NFVIaaS, VNFaaS, the VNF forwarding graph (Service Chains), and the use cases of VNPaaS. More information about this project and various implementation components is available at https://www.opnfv.org/. For the definitions of missing terminologies, please consult http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_NFV003v010201p.pdf. Virtualization support for the Yocto Project The meta-virtualization layer tries to create a long and medium term production-ready layer specifically for an embedded virtualization. This roles that this has are: Simplifying the way collaborative benchmarking and researching is done with tools, such as KVM/LxC virtualization, combined with advance core isolation and other techniques Integrating and contributing with projects, such as OpenFlow, OpenvSwitch, LxC, dmtcp, CRIU and others, which can be used with other components, such as OpenStack or Carrier Graded Linux. To summarize this in one sentence, this layer tries to provide support while constructing OpenEmbedded and Yocto Project-based virtualized solutions. The packages that are available in this layer, which I will briefly talk about are as follows: CRIU Docker LXC Irqbalance Libvirt Xen Open vSwitch This layer can be used in conjunction with the meta-cloud-services layer that offer cloud agents and API support for various cloud-based solutions. In this article, I am referring to both these layers because I think it is fit to present these two components together. Inside the meta-cloud-services layer, there are also a couple of packages that will be discussed and briefly presented, as follows: openLDAP SPICE Qpid RabbitMQ Tempest Cyrus-SASL Puppet oVirt OpenStack Having mentioned these components, I will now move on with the explanation of each of these tools. Let's start with the content of the meta-virtualization layer, more exactly with CRIU package, a project that implements Checkpoint/Restore In Userspace for Linux. It can be used to freeze an already running application and checkpoint it to a hard drive as a collection of files. These checkpoints can be used to restore and execute the application from that point. It can be used as part of a number of use cases, as follows: Live migration of containers: It is the primary use case for a project. The container is check pointed and the resulting image is moved into another box and restored there, making the whole experience almost unnoticeable by the user. Upgrading seamless kernels: The kernel replacement activity can be done without stopping activities. It can be check pointed, replaced by calling kexec, and all the services can be restored afterwards. Speeding up slow boot services: It is a service that has a slow boot procedure, can be check pointed after the first start up is finished, and for consecutive starts, can be restored from that point. Load balancing of networks: It is a part of the TCP_REPAIR socket option and switches the socket in a special state. The socket is actually put into the state expected from it at the end of the operation. For example, if connect() is called, the socket will be put in an ESTABLISHED state as requested without checking for acknowledgment of communication from the other end, so offloading could be at the application level. Desktop environment suspend/resume: It is based on the fact that the suspend/restore action for a screen session or an X application is by far faster than the close/open operation. High performance and computing issues: It can be used for both load balancing of tasks over a cluster and the saving of cluster node states in case a crash occurs. Having a number of snapshots for application doesn't hurt anybody. Duplication of processes: It is similar to the remote fork() operation. Snapshots for applications: A series of application states can be saved and reversed back if necessary. It can be used both as a redo for the desired state of an application as well as for debugging purposes. Save ability in applications that do not have this option: An example of such an application could be games in which after reaching a certain level, the establishment of a checkpoint is the thing you need. Migrate a forgotten application onto the screen: If you have forgotten to include an application onto the screen and you are already there, CRIU can help with the migration process. Debugging of applications that have hung: For services that are stuck because of git and need a quick restart, a copy of the services can be used to restore. A dump process can also be used and through debugging, the cause of the problem can be found. Application behavior analysis on a different machine: For those applications that could behave differently from one machine to another, a snapshot of the application in question can be used and transferred into the other. Here, the debugging process can also be an option. Dry running updates: Before a system or kernel update on a system is done, its services and critical applications could be duplicated onto a virtual machine and after the system update and all the test cases pass, the real update can be done. Fault-tolerant systems: It can be used successfully for process duplication on other machines. The next element is irqbalance, a distributed hardware interrupt system that is available across multiple processors and multiprocessor systems. It is, in fact, a daemon used to balance interrupts across multiple CPUs, and its purpose is to offer better performances as well as better IO operation balance on SMP systems. It has alternatives, such as smp_affinity, which could achieve maximum performance in theory, but lacks the same flexibility that irqbalance provides. The libvirt toolkit can be used to connect with the virtualization capabilities available in the recent Linux kernel versions that have been licensed under the GNU Lesser General Public License. It offers support for a large number of packages, as follows: KVM/QEMU Linux supervisor Xen supervisor LXC Linux container system OpenVZ Linux container system Open Mode Linux a paravirtualized kernel Hypervisors that include VirtualBox, VMware ESX, GSX, Workstation and player, IBM PowerVM, Microsoft Hyper-V, Parallels, and Bhyve Besides these packages, it also offers support for storage on a large variety of filesystems, such as IDE, SCSI or USB disks, FiberChannel, LVM, and iSCSI or NFS, as well as support for virtual networks. It is the building block for other higher-level applications and tools that focus on the virtualization of a node and it does this in a secure way. It also offers the possibility of a remote connection. For more information about libvirt, take a look at its project goals and terminologies at http://libvirt.org/goals.html. The next is Open vSwitch, a production-quality implementation of a multilayer virtual switch. This software component is licensed under Apache 2.0 and is designed to enable massive network automations through various programmatic extensions. The Open vSwitch package, also abbreviated as OVS, provides a two stack layer for hardware virtualizations and also supports a large number of the standards and protocols available in a computer network, such as sFlow, NetFlow, SPAN, CLI, RSPAN, 802.1ag, LACP, and so on. Xen is a hypervisor with a microkernel design that provides services offering multiple computer operating systems to be executed on the same architecture. It was first developed at the Cambridge University in 2003, and was developed under GNU General Public License version 2. This piece of software runs on a more privileged state and is available for ARM, IA-32, and x86-64 instruction sets. A hypervisor is a piece of software that is concerned with the CPU scheduling and memory management of various domains. It does this from the domain 0 (dom0), which controls all the other unprivileged domains called domU; Xen boots from a bootloader and usually loads into the dom0 host domain, a paravirtualized operating system. A brief look at the Xen project architecture is available here: Linux Containers (LXC) is the next element available in the meta-virtualization layer. It is a well-known set of tools and libraries that offer virtualization at the operating system level by offering isolated containers on a Linux control host machine. It combines the functionalities of kernel control groups (cgroups) with the support for isolated namespaces to provide an isolated environment. It has received a fair amount of attention mostly due to Docker, which will be briefly mentioned a bit later. Also, it is considered a lightweight alternative to full machine virtualization. Both of these options, containers and machine virtualization, have a fair amount of advantages and disadvantages. If the first option, containers offer low overheads by sharing certain components, and it may turn out that it does not have a good isolation. Machine virtualization is exactly the opposite of this and offers a great solution to isolation at the cost of a bigger overhead. These two solutions could also be seen as complementary, but this is only my personal view of the two. In reality, each of them has its particular set of advantages and disadvantages that could sometimes be uncomplementary as well. More information about Linux containers is available at https://linuxcontainers.org/. The last component of the meta-virtualization layer that will be discussed is Docker, an open source piece of software that tries to automate the method of deploying applications inside Linux containers. It does this by offering an abstraction layer over LXC. Its architecture is better described in this image: As you can see in the preceding diagram, this software package is able to use the resources of the operating system. Here, I am referring to the functionalities of the Linux kernel and have isolated other applications from the operating system. It can do this either through LXC or other alternatives, such as libvirt and systemd-nspawn, which are seen as indirect implementations. It can also do this directly through the libcontainer library, which has been around since the 0.9 version of Docker. Docker is a great component if you want to obtain automation for distributed systems, such as large-scale web deployments, service-oriented architectures, continuous deployment systems, database clusters, private PaaS, and so on. More information about its use cases is available at https://www.docker.com/resources/usecases/. Make sure you take a look at this website; interesting information is often here. After finishing with the meta-virtualization layer, I will move next to the meta-cloud-services layer that contains various elements. I will start with Simple Protocol for Independent Computing Environments (Spice). This can be translated into a remote-display system for virtualized desktop devices. It initially started as a closed source software, and in two years it was decided to make it open source. It then became an open standard to interaction with devices, regardless of whether they are virtualized one not. It is built on a client-server architecture, making it able to deal with both physical and virtualized devices. The interaction between backend and frontend is realized through VD-Interfaces (VDI), and as shown in the following diagram, its current focus is the remote access to QEMU/KVM virtual machines: Next on the list is oVirt, a virtualization platform that offers a web interface. It is easy to use and helps in the management of virtual machines, virtualized networks, and storages. Its architecture consists of an oVirt Engine and multiple nodes. The engine is the component that comes equipped with a user-friendly interface to manage logical and physical resources. It also runs the virtual machines that could be either oVirt nodes, Fedora, or CentOS hosts. The only downfall of using oVirt is that it only offers support for a limited number of hosts, as follows: Fedora 20 CentOS 6.6, 7.0 Red Hat Enterprise Linux 6.6, 7.0 Scientific Linux 6.6, 7.0 As a tool, it is really powerful. It offers integration with libvirt for Virtual Desktops and Servers Manager (VDSM) communications with virtual machines and also support for SPICE communication protocols that enable remote desktop sharing. It is a solution that was started and is mainly maintained by Red Hat. It is the base element of their Red Hat Enterprise Virtualization (RHEV), but one thing is interesting and should be watched out for is that Red Hat now is not only a supporter of projects, such as oVirt and Aeolus, but has also been a platinum member of the OpenStack foundation since 2012. For more information on projects, such as oVirt, Aeolus, and RHEV, the following links can be useful to you: http://www.redhat.com/promo/rhev3/?sc_cid=70160000000Ty5wAAC&offer_id=70160000000Ty5NAAS, http://www.aeolusproject.org/ and http://www.ovirt.org/Home. I will move on to a different component now. Here, I am referring to the open source implementation of the Lightweight Directory Access Protocol, simply called openLDAP. Although it has a somewhat controverted license called OpenLDAP Public License, which is similar in essence to the BSD license, it is not recorded at opensource.org, making it uncertified by Open Source Initiative (OSI). This software component comes as a suite of elements, as follows: A standalone LDAP daemon that plays the role of a server called slapd A number of libraries that implement the LDAP protocol Last but not the least, a series of tools and utilities that also have a couple of clients samples between them There are also a number of additions that should be mentioned, such as ldapc++ and libraries written in C++, JLDAP and the libraries written in Java; LMDB, a memory mapped database library; Fortress, a role-based identity management; SDK, also written in Java; and a JDBC-LDAP Bridge driver that is written in Java and called JDBC-LDAP. Cyrus-SASL is a generic client-server library implementation for Simple Authentication and Security Layer (SASL) authentication. It is a method used for adding authentication support for connection-based protocols. A connection-based protocol adds a command that identifies and authenticates a user to the requested server and if negotiation is required, an additional security layer is added between the protocol and the connection for security purposes. More information about SASL is available in the RFC 2222, available at http://www.ietf.org/rfc/rfc2222.txt. For a more detailed description of Cyrus SASL, refer to http://www.sendmail.org/~ca/email/cyrus/sysadmin.html. Qpid is a messaging tool developed by Apache, which understands Advanced Message Queueing Protocol (AMQP) and has support for various languages and platforms. AMQP is an open source protocol designed for high-performance messaging over a network in a reliable fashion. More information about AMQP is available at http://www.amqp.org/specification/1.0/amqp-org-download. Here, you can find more information about the protocol specifications as well as about the project in general. Qpid projects push the development of AMQP ecosystems and this is done by offering message brokers and APIs that can be used in any developer application that intends to use AMQP messaging part of their product. To do this, the following can be done: Letting the source code open source. Making AMQP available for a large variety of computing environments and programming languages. Offering the necessary tools to simplify the development process of an application. Creating a messaging infrastructure to make sure that other services can integrate well with the AMQP network. Creating a messaging product that makes integration with AMQP trivial for any programming language or computing environment. Make sure that you take a look at Qpid Proton at http://qpid.apache.org/proton/overview.html for this. More information about the the preceding functionalities can be found at http://qpid.apache.org/components/index.html#messaging-apis. RabbitMQ is another message broker software component that implements AMQP, which is also available as open source. It has a number of components, as follows: The RabbitMQ exchange server Gateways for HTTP, Streaming Text Oriented Message Protocol (STOMP) and Message Queue Telemetry Transport (MQTT) AMQP client libraries for a variety of programming languages, most notably Java, Erlang, and .Net Framework A plugin platform for a number of custom components that also offer a collection of predefined one: Shovel: It is a plugin that executes the copy/move operation for messages between brokers Management: It enables the control and monitoring of brokers and clusters of brokers Federation: It enables sharing at the exchange level of messages between brokers You can find out more information regarding RabbitMQ by referring to the RabbitMQ documentation article at http://www.rabbitmq.com/documentation.html. Comparing the two, Qpid and RabbitMQ, it can be concluded that RabbitMQ is better and also that it has a fantastic documentation. This makes it the first choice for the OpenStack Foundation as well as for readers interested in benchmarking information for more than these frameworks. It is also available at http://blog.x-aeon.com/2013/04/10/a-quick-message-queue-benchmark-activemq-rabbitmq-hornetq-qpid-apollo/. One such result is also available in this image for comparison purposes: The next element is puppet, an open source configuration management system that allows IT infrastructure to have certain states defined and also enforce these states. By doing this, it offers a great automation system for system administrators. This project is developed by the Puppet Labs and was released under GNU General Public License until version 2.7.0. After this, it moved to the Apache License 2.0 and is now available in two flavors: The open source puppet version: It is mostly similar to the preceding tool and is capable of configuration management solutions that permit for definition and automation of states. It is available for both Linux and UNIX as well as Max OS X and Windows. The puppet enterprise edition: It is a commercial version that goes beyond the capabilities of the open source puppet and permits the automation of the configuration and management process. It is a tool that defines a declarative language for later use for system configuration. It can be applied directly on the system or even compiled as a catalogue and deployed on a target using a client-server paradigm, which is usually the REST API. Another component is an agent that enforces the resources available in the manifest. The resource abstraction is, of course, done through an abstraction layer that defines the configuration through higher lever terms that are very different from the operating system-specific commands. If you visit http://docs.puppetlabs.com/, you will find more documentation related to Puppet and other Puppet Lab tools. With all this in place, I believe it is time to present the main component of the meta-cloud-services layer, called OpenStack. It is a cloud operating system that is based on controlling a large number of components and together it offers pools of compute, storage, and networking resources. All of them are managed through a dashboard that is, of course, offered by another component and offers administrators control. It offers users the possibility of providing resources from the same web interface. Here is an image depicting the Open Source Cloud operating System, which is actually OpenStack: It is primarily used as an IaaS solution, its components are maintained by the OpenStack Foundation, and is available under Apache License version 2. In the Foundation, today, there are more than 200 companies that contribute to the source code and general development and maintenance of the software. At the heart of it, all are staying its components Also, each component has a Python module used for simple interaction and automation possibilities: Compute (Nova): It is used for the hosting and management of cloud computing systems. It manages the life cycles of the compute instances of an environment. It is responsible for the spawning, decommissioning, and scheduling of various virtual machines on demand. With regard to hypervisors, KVM is the preferred option but other options such as Xen and VMware are also viable. Object Storage (Swift): It is used for storage and data structure retrieval via RESTful and the HTTP API. It is a scalable and fault-tolerant system that permits data replication with objects and files available on multiple disk drives. It is developed mainly by an object storage software company called SwiftStack. Block Storage (Cinder): It provides persistent block storage for OpenStack instances. It manages the creation and attach and detach actions for block devices. In a cloud, a user manages its own devices, so a vast majority of storage platforms and scenarios should be supported. For this purpose, it offers a pluggable architecture that facilitates the process. Networking (Neutron): It is the component responsible for network-related services, also known as Network Connectivity as a Service. It provides an API for network management and also makes sure that certain limitations are prevented. It also has an architecture based on pluggable modules to ensure that as many networking vendors and technologies as possible are supported. Dashboard (Horizon): It provides web-based administrators and user graphical interfaces for interaction with the other resources made available by all the other components. It is also designed keeping extensibility in mind because it is able to interact with other components responsible for monitoring and billing as well as with additional management tools. It also offers the possibility of rebranding according to the needs of commercial vendors. Identity Service (Keystone): It is an authentication and authorization service It offers support for multiple forms of authentication and also existing backend directory services such as LDAP. It provides a catalogue for users and the resources they can access. Image Service (Glance): It is used for the discovery, storage, registration, and retrieval of images of virtual machines. A number of already stored images can be used as templates. OpenStack also provides an operating system image for testing purposes. Glance is the only module capable of adding, deleting, duplicating, and sharing OpenStack images between various servers and virtual machines. All the other modules interact with the images using the available APIs of Glance. Telemetry (Ceilometer): It is a module that provides billing, benchmarking, and statistical results across all current and future components of OpenStack with the help of numerous counters that permit extensibility. This makes it a very scalable module. Orchestrator (Heat): It is a service that manages multiple composite cloud applications with the help of various template formats, such as Heat Orchestration Templates (HOT) or AWS CloudFormation. The communication is done both on a CloudFormation compatible Query API and an Open Stack REST API. Database (Trove): It provides Cloud Database as service functionalities that are both reliable and scalable. It uses relational and nonrelational database engines. Bare Metal Provisioning (Ironic): It is a components that provides virtual machine support instead of bare metal machines support. It started as a fork of the Nova Baremetal driver and grew to become the best solution for a bare-metal hypervisor. It also offers a set of plugins for interaction with various bare-metal hypervisors. It is used by default with PXE and IPMI, but of course, with the help of the available plugins it can offer extended support for various vendor-specific functionalities. Multiple Tenant Cloud Messaging (Zaqar): It is, as the name suggests, a multitenant cloud messaging service for the web developers who are interested in Software as a Service (SaaS). It can be used by them to send messages between various components by using a number of communication patterns. However, it can also be used with other components for surfacing events to end users as well as communication in the over-cloud layer. Its former name was Marconi and it also provides the possibility of scalable and secure messaging. Elastic Map Reduce (Sahara): It is a module that tries to automate the method of providing the functionalities of Hadoop clusters. It only requires the defines for various fields, such as Hadoop versions, various topology nodes, hardware details, and so on. After this, in a few minutes, a Hadoop cluster is deployed and ready for interaction. It also offers the possibility of various configurations after deployment. Having mentioned all this, maybe you would not mind if a conceptual architecture is presented in the following image to present to you with ways in which the above preceding components are interacted with. To automate the deployment of such an environment in a production environment, automation tools, such as the previously mentioned Puppet tool, can be used. Take a look at this diagram: Now, let's move on and see how such a system can be deployed using the functionalities of the Yocto Project. For this activity to start, all the required metadata layers should be put together. Besides the already available Poky repository, other ones are also required and they are defined in the layer index on OpenEmbedded's website because this time, the README file is incomplete: git clone –b dizzy git://git.openembedded.org/meta-openembedded git clone –b dizzy git://git.yoctoproject.org/meta-virtualization git clone –b icehouse git://git.yoctoproject.org/meta-cloud-services source oe-init-build-env ../build-controller After the appropriate controller build is created, it needs to be configured. Inside the conf/layer.conf file, add the corresponding machine configuration, such as qemux86-64, and inside the conf/bblayers.conf file, the BBLAYERS variable should be defined accordingly. There are extra metadata layers, besides the ones that are already available. The ones that should be defined in this variable are: meta-cloud-services meta-cloud-services/meta-openstack-controller-deploy meta-cloud-services/meta-openstack meta-cloud-services/meta-openstack-qemu meta-openembedded/meta-oe meta-openembedded/meta-networking meta-openembedded/meta-python meta-openembedded/meta-filesystem meta-openembedded/meta-webserver meta-openembedded/meta-ruby After the configuration is done using the bitbake openstack-image-controller command, the controller image is built. The controller can be started using the runqemu qemux86-64 openstack-image-controller kvm nographic qemuparams="-m 4096" command. After finishing this activity, the deployment of the compute can be started in this way: source oe-init-build-env ../build-compute With the new build directory created and also since most of the work of the build process has already been done with the controller, build directories such as downloads and sstate-cache, can be shared between them. This information should be indicated through DL_DIR and SSTATE_DIR. The difference between the two conf/bblayers.conf files is that the second one for the build-compute build directory replaces meta-cloud-services/meta-openstack-controller-deploy with meta-cloud-services/meta-openstack-compute-deploy. This time the build is done with bitbake openstack-image-compute and should be finished faster. Having completed the build, the compute node can also be booted using the runqemu qemux86-64 openstack-image-compute kvm nographic qemuparams="-m 4096 –smp 4" command. This step implies the image loading for OpenStack Cirros as follows: wget download.cirros-cloud.net/0.3.2/cirros-0.3.2-x86_64-disk.img scp cirros-0.3.2-x86_64-disk.img root@<compute_ip_address>:~ ssh root@<compute_ip_address> ./etc/nova/openrc glance image-create –name "TestImage" –is=public true –container-format bare –disk-format qcow2 –file /home/root/cirros-0.3.2-x86_64-disk.img Having done all of this, the user is free to access the Horizon web browser using http://<compute_ip_address>:8080/ The login information is admin and the password is password. Here, you can play and create new instances, interact with them, and, in general, do whatever crosses your mind. Do not worry if you've done something wrong to an instance; you can delete it and start again. The last element from the meta-cloud-services layer is the Tempest integration test suite for OpenStack. It is represented through a set of tests that are executed on the OpenStack trunk to make sure everything is working as it should. It is very useful for any OpenStack deployments. More information about Tempest is available at https://github.com/openstack/tempest. Summary In this article, you were not only presented with information about a number of virtualization concepts, such as NFV, SDN, VNF, and so on, but also a number of open source components that contribute to everyday virtualization solutions. I offered you examples and even a small exercise to make sure that the information remains with you even after reading this book. I hope I made some of you curious about certain things. I also hope that some of you documented on projects that were not presented here, such as the OpenDaylight (ODL) initiative, that has only been mentioned in an image as an implementation suggestion. If this is the case, I can say I fulfilled my goal. Resources for Article: Further resources on this subject: Veil-Evasion [article] Baking Bits with Yocto Project [article] An Introduction to the Terminal [article]
Read more
  • 0
  • 0
  • 8269

article-image-installation-and-setup
Packt
07 Jul 2015
15 min read
Save for later

Installation and Setup

Packt
07 Jul 2015
15 min read
The Banana Pi is a single-board computer, which enables you to build your own individual and versatile system. In fact, it is a complete computer, including all the required elements such as a processor, memory, network, and other interfaces, which we are going to explore. It provides enough power to run even relatively complex applications suitably. In this article by, Ryad El-Dajani, author of the book, Banana Pi Cookbook, we are going to get to know the Banana Pi device. The available distributions are mentioned, as well as how to download and install these distributions. We will also examine Android in contrast to our upcoming Linux adventure. (For more resources related to this topic, see here.) Thus, you are going to transform your little piece of hardware into a functional, running computer with a working operating system. You will master the whole process of doing the required task from connecting the cables, choosing an operating system, writing the image to an SD card, and successfully booting up and shutting down your device for the first time. Banana Pi Overview In the following picture, you see a Banana Pi on the left-hand side and a Banana Pro on the right-hand side: As you can see, there are some small differences that we need to notice. The Banana Pi provides a dedicated composite video output besides the HDMI output. However, with the Banana Pro, you can connect your display via composite video output using a four-pole composite audio/video cable on the jack. In contrast to the Banana Pi, which has 26 pin headers, the Banana Pro provides 40 pins. Also the pins for the UART port interface are located below the GPIO headers on the Pi, while they are located besides the network interface on the Pro. The other two important differences are not clearly visible on the previous picture. The operating system for your device comes in the form of image files that need to be written (burned) to an SD card. The Banana Pi uses normal SD cards while the Banana Pro will only accept Micro SD cards. Moreover, the Banana Pro provides a Wi-Fi interface already on board. Therefore, you are also able to connect the Banana Pro to your wireless network, while the Pi would require an external wireless USB device. Besides the mentioned differences, the devices are very similar. You will find the following hardware components and interfaces on your device. On the back side, you will find: A20 ARM Cortex-A7 dual core central processing unit (CPU) ARM Mali400 MP2 graphics processing unit (GPU) 1 gigabyte of DDR3 memory (that is shared with the GPU) On the front side, you will find: Ethernet network interface adapter Two USB 2.0 ports A 5V micro USB power with DC in and a micro USB OTG port A SATA 2.0 port and SATA power output Various display outputs [HDMI, LVDS, and composite (integrated into jack on the Pro)] A CSI camera input connector An infrared (IR) receiver A microphone Various hardware buttons on board (power key, reset key, and UBoot key) Various LEDs (red for power status, blue for Ethernet status, and green for user defined) As you can see, you have a lot of opportunities for letting your device interact with various external components. Operating systems for the Banana Pi The Banana Pi is capable of running any operating system that supports the ARM Cortex-A7 architecture. There are several operating systems precompiled, so you are able to write the operating system to an SD card and boot your system flawlessly. Currently, there are the following operating systems provided officially by LeMaker, the manufacturer of the Banana Pi. Android Android is a well-known operating system for mobile phones, but it is also runnable on various other devices such as smart watches, cars, and, of course, single-board computers such as the Banana Pi. The main advantage of running Android on a single-board computer is its convenience. Anybody who uses an Android-based smartphone will recognize the graphical user interface (GUI) and may have less initial hurdles. Also, setting up a media center might be easier to do on Android than on a Linux-based system. However, there are also a few disadvantages, as you are limited to software that is provided by an Android store such as Google Play. As most apps are optimized for mobile use at the moment, you will not find a lot of usable software for your Banana Pi running Android, except some Games and Multimedia applications. Moreover, you are required to use special Windows software called PhoenixCard to be able to prepare an Android SD card. In this article, we are going to ignore the installing of Android. For further information, please see Installing the Android OS image (LeMaker Wiki) at http://wiki.lemaker.org/BananaPro/Pi:SD_card_installation. Linux Most of the Linux users never realize that they are actually using Linux when operating their phones, appliances, routers, and many more products, as most of its magic happens in the background. We are going to dig into this adventure to discover its possibilities when running on our Banana Pi device. The following Linux-based operating systems—so-called distributions—are used by the majority of the Banana Pi user base and are supported officially by the manufacturer: Lubuntu: This is a lightweight distribution based on the well-known Ubuntu using the LXDE desktop, which is principally a good choice, if you are a Windows user. Raspbian: This is a distribution based on Debian, which was initially produced for the Raspberry Pi (hence the name). As a lot of Raspberry Pi owners are running Raspbian on their devices while also experimenting with the Banana Pi, LeMaker ported the original Raspbian distribution to the Banana Pi. Raspbian also comes with an LXDE desktop by default. Bananian: This too is a Debian-based Linux distribution optimized exclusively for the Banana Pi and its siblings. All of the aforementioned distributions are based on the well-known distribution, Debian. Besides the huge user base, all Debian-based distributions use the same package manager Apt (Advanced Packaging Tool) to search for and install new software, and all are similar to use. There are still more distributions that are officially supported by LeMaker, such as Berryboot, LeMedia, OpenSUSE, Fedora, Gentoo, Scratch, ArchLinux, Open MediaVault, and OpenWrt. All of them have their pros and cons or their specific use cases. If you are an experienced Linux user, you may choose your preferred distribution from the mentioned list, as most of the recipes are similar to, or even equally usable on, most of the Linux-based operating systems. Moreover, the Banana Pi community publishes various customized Linux distributions for the Banana Pi regularly. The possible advantages of a customized distribution may include enabled and optimized hardware acceleration capabilities, supportive helper scripts, fully equipped desktop environments, and much more. However, when deciding to use a customized distribution, there is no official support by LeMaker and you have to contact the publisher in case you encounter bugs, or need help. You can also check the customized Arch Linux image that author have built (http://blog.eldajani.net/banana-pi-arch-linux-customized-distribution/) for the Banana Pi and Banana Pro, including several useful applications. Downloading an operating system for the Banana Pi The following two recipes will explain how to set up the SD card with the desired operating system and how to get the Banana Pi up and running for the first time. This recipe is a predecessor. Besides the device itself, you will need at least a source for energy, which is usually a USB power supply and an SD card to boot your Banana Pi. Also, a network cable and connection is highly recommended to be able to interact with your Banana Pi from another computer via a remote shell using the application. You might also want to actually see something on a display. Then, you will need to connect your Banana Pi via HDMI, composite, or LVDS to an external screen. It is recommended that you use an HDMI Version 1.4 cable since lower versions can possibly cause issues. Besides inputting data using a remote shell, you can directly connect an USB keyboard and mouse to your Banana Pi via the USB ports. After completing the required tasks in the upcoming recipes, you will be able to boot your Banana Pi. Getting ready The following components are required for this recipe: Banana Pi SD card (minimum class 4; class 10 is recommended) USB power supply (5V 2A recommended) A computer with an SD card reader/writer (to write the image to the SD card) Furthermore, you are going to need an Internet connection to download a Linux distribution or Android. A few optional but highly recommended components are: Connection to a display (via HDMI or composite) Network connection via Ethernet USB keyboard and mouse You can acquire these items from various retailers. All items shown in the previous two pictures were bought from an online retailer that is known for originally selling books. However, the Banana Pi and the other products can be acquired from a large number of retailers. It is recommended to get a USB power supply with 2000mA (2A) output. How to do it… To download an operating system for Banana Pi, follow these steps: Download an image of your desired operating system. We are going to download Android and Raspbian from the official LeMaker image files website: http://www.lemaker.org/resources/9-38/image_files.html. The following screenshot shows the LeMaker website where you can download the official images: If you are clicking on one of the mirrors (such as Google Drive, Dropbox, and so on), you will be redirected to the equivalent file-hosting service. From there, you are actually able to download the archive file. Once your archive containing the image is downloaded, you are ready to unpack the downloaded archive, which we will do in the upcoming recipes. Setting up the SD card on Windows This recipe will explain how to set up the SD card using a Windows operating system. How to do it… In the upcoming steps, we will unpack the archive containing the operating system image for the Banana Pi and write the image to the SD card: Open the downloaded archive with 7-Zip. The following screenshot shows the 7-Zip application opening a compressed .tgz archive: Unpack the archive to a directory until you get a file with the file extension .img. If it is .tgz or .tar.gz file, you will need to unpack the archive twice Create a backup of the contents of the SD card as everything on the SD card is going to be erased unrecoverablely. Open SD Formatter (https://www.sdcard.org/downloads/formatter_4/) and check the disk letter (E: in the following screenshot). Choose Option to open the Option Setting window and choose: FORMAT TYPE: FULL (Erase) FORMAT SIZE ADJUSTMENT: ON When everything is configured correctly, check again to see whether you are using the correct disk and click Format to start the formatting process. Writing a Linux distribution image to the SD card on Windows The following steps explain how to write a Linux-based distribution to the SD card on Windows: Format the SD card using SD Formatter, which we covered in the previous section. Open the Win32 Disk Imager (http://sourceforge.net/projects/win32diskimager/). Choose the image file by clicking on the directory button. Check, whether you are going to write to the correct disk and then click on Write. Once the burning process is done, you are ready to insert the freshly prepared SD card containing your Linux operating system into the Banana Pi and boot it up for the first time. Booting up and shutting down the Banana Pi This recipe will explain how to boot up and shut down the Banana Pi. As the Banana Pi is a real computer, these tasks are as equally important as tasks on your desktop computer. The booting process starts the Linux kernel and several important services. The shutting down stops them accordingly and does not power off the Banana Pi until all data is synchronized with the SD card or external components correctly. How to do it… We are going to boot up and shut down the Banana Pi. Booting up Do the following steps to boot up your Banana Pi: Attach the Ethernet cable to your local network. Connect your Banana Pi to a display. Plug in an USB keyboard and mouse. Insert the SD card to your device. Power your Banana Pi by plugging in the USB power cable. The next screenshot shows the desktop of Raspbian after a successful boot: Shutting down Linux To shut down your Linux-based distribution, you either use the shutdown command or do it via the desktop environment (in case of Raspbian, it is called LXDE). For the latter method, these are the steps: Click on the LXDE icon in the lower-left corner. Click on Logout. Click on Shutdown in the upcoming window. To shut down your operating system via the shell, type in the following command: $ sudo shutdown -h now Connecting via SSH on Windows using PuTTY The following recipe shows you how to connect to your Banana Pi remotely using an open source application called PuTTY. Getting ready For this recipe, you will need the following ingredients: A booted up Linux operating system on your Banana Pi connected to your local network The PuTTY application on your Windows PC that is also connected to your local area network How to do it… To connect to your Banana Pi via SSH on Windows, perform the following: Run putty.exe. You will see the PuTTY Configuration dialog. Enter the IP address of the Banana Pi and leave the Port as number 22 as. Click on the Open button. A new terminal will appear, attempting a connection to the Banana Pi. When connecting to the Banana Pi for the first time, you will see a PuTTY security alert. The following screenshot shows the PuTTY Security Alert window: Trust the connection by clicking on Yes. You will be requested to enter the login credentials. Use the default username bananapi and password bananapi. When you are done, you should be welcomed by the shell of your Banana Pi. The following screenshot shows the shell of your Banana Pi accessed via SSH using PuTTY on Windows: To quit your SSH session, execute the command exit or press Ctrl + D. Searching, installing, and removing the software Once you have your decent operating system on the Banana Pi, sooner or later you are going to require a new software. As most software for Linux systems is published as open source, you can obtain the source code and compile it for yourself. One alternative is to use a package manager. A lot of software is precompiled and provided as installable packages by the so-called repositories. In case of Debian-based distributions (for example, Raspbian, Bananian, and Lubuntu), the package manager that uses these repositories is called Advanced Packaging Tool (Apt). The two most important tools for our requirements will be apt-get and apt-cache. In this recipe, we will cover the searching, the installing, and removing of software using the Apt utilities. Getting ready The following ingredients are required for this recipe. A booted Debian-based operating system on your Banana Pi An Internet connection How to do it… We will separate this recipe into searching for, installing and removing of packages. Searching for packages In the upcoming example, we will search for a solitaire game: Connect to your Banana Pi remotely or open a terminal on the desktop. Type the following command into the shell: $ apt-cache search solitaire You will get a list of packages that contain the string solitaire in their package name or description. Each line represents a package and shows the package name and description separated by a dash (-). Now we have obtained a list of solitaire games: The preceding screenshot shows the output after searching for packages containing the string solitaire using the apt-cache command. Installing a package We are going to install a package by using its package name. From the previous received list, we select the package ace-of-penguins. Type the following command into the shell: $ sudo apt-get install ace-of-penguins If asked to type the password for sudo, enter the user's password. If a package requires additional packages (dependencies), you will be asked to confirm the additional packages. In this case, enter Y. After downloading and installing, the desired package is installed: Removing a package When you want to uninstall (remove) a package, you also use the apt-get command: Type the following command into a shell: $ sudo apt-get remove ace-of-penguins If asked to type the password for sudo, enter the user's password. You will be asked to confirm the removal. Enter Y. After this process, the package is removed from your system. You will have uninstalled the package ace-of-penguins. Summary In this article, we discovered the installation of a Linux operating system on the Banana Pi. Furthermore, we connected to the Banana Pi via the SSH protocol using PuTTY. Moreover, we discussed how to install new software using the Advanced Packaging Tool. This article is a combination of parts from the first two chapters of the Banana Pi Cookbook. In the Banana Pi Cookbook, we are diving more into detail and explain the specifics of the Banana Pro, for example, how to connect to the local network via WLAN. If you are using a Linux-based desktop computer, you will also learn how to set up the SD card and connect via SSH to your Banana Pi on your Linux computer. Resources for Article: Further resources on this subject: Color and motion finding [article] Controlling the Movement of a Robot with Legs [article] Develop a Digital Clock [article]
Read more
  • 0
  • 0
  • 12035
article-image-getting-current-weather-forecast
Packt
06 Jul 2015
4 min read
Save for later

Getting the current weather forecast

Packt
06 Jul 2015
4 min read
In this article by Marco Schwartz, author of the book Intel Galileo Blueprints, we will configure Forecast.io. Forecast.io is a web API that returns weather forecasts of your exact location, and it updates them by the minute. The API has stunning maps, weather animations, temperature unit options, forecast lines, and more. (For more resources related to this topic, see here.) We will use this API to integrate global weather measurements with our local measurements. To do so, first go to the following link: http://forecast.io/ Then, look for the Forecast API link at the bottom of the page. It should be under the Developers section of the footer: You need to create your own Forecast.io account. You can do so by clicking on the Register button on the top right-hand side portion of the page. It will take you to the registration page where you need to provide an e-mail address and a strong password. Then, you will be required to get an API key, which will be displayed in the Forecast.io interface: Write this down somewhere, as you will need it soon. We will then use a Node.js module to get the forecast. The steps are described in more detail at the following link: https://github.com/mateodelnorte/forecast.io Next, you need to determine the latitude and longitude that you are currently in. Head on to the following link to generate it automatically: http://www.ip2location.com/ Then, we modify the main.js file: var Forecast = require('forecast.io'); var util = require('util'); This will set our API key with the one used/returned before: var options = { APIKey: 'your_api_key' }, forecast = new Forecast(options); Next, we'll define a new API route for the forecast. This is also where you need to put your longitude and latitude: app.get('/api/forecast', function(req, res) { forecast.get('latitude', 'longitude', function (err, result, data) {    if (err) throw err;    console.log('data: ' + util.inspect(data));    res.json(data); }); }); We will also modify the Interface.jade file with a new container: h3.row .col-md-4    div Forecast .col-md-4    div#summary Summary In the JavaScript file, we will refresh the field in the interface. We simply get the summary of the current weather conditions: $.get('/api/forecast', function(json_data) {      $('#summary').html('Summary: ' + json_data.currently.summary);    }); Again, the complete code can be found at the following link: https://github.com/marcoschwartz/galileo-blueprints-book After downloading, you can now build and upload the application to the board. Next comes the fun part, as we will test our creation. Go to the IP address of your board with port 3000: http://192.168.1.103:3000/ You will be able to see the interface as follows: Congratulations! You have been able to retrieve the data from Forecast.io and display it in your browser. If you're not getting the expected result, don't worry. You can go back and check everything. Ensure that you have downloaded and installed the correct software on your board. Also ensure that you correctly entered your API key in the application. Of course, you can modify your own interface as you wish. You can also add more fields from the answer response of Forecast.io. For instance, you can add a Fahrenheit measurement counterpart. Alternately, you can even add forecasts for the next hour and for the next 24 hours. Just ensure that you check the Forecast.io documentation for all the fields that you wish to use. Summary In this article, we configured Forecast.io that is a web API that returns weather forecasts of your exact location and it updates the same every minute. Resources for Article: Further resources on this subject: Controlling DC motors using a shield [article] Getting Started with Intel Galileo [article] Dealing with Interrupts [article]
Read more
  • 0
  • 0
  • 2321

article-image-color-and-motion-finding
Packt
16 Jun 2015
4 min read
Save for later

Color and motion finding

Packt
16 Jun 2015
4 min read
In this article by Richard Grimmet, the author of the book, Raspberry Pi Robotics Essentials, we'll look at how to detect the Color and motion of an object. (For more resources related to this topic, see here.) OpenCV and your webcam can also track colored objects. This will be useful if you want your biped to follow a colored object. OpenCV makes this amazingly simple by providing some high-level libraries that can help us with this task. To accomplish this, you'll edit a file to look something like what is shown in the following screenshot: Let's look specifically at the code that makes it possible to isolate the colored ball: hue_img = cv.CvtColor(frame, cv.CV_BGR2HSV): This line creates a new image that stores the image as per the values of hue (color), saturation, and value (HSV), instead of the red, green, and blue (RGB) pixel values of the original image. Converting to HSV focuses our processing more on the color, as opposed to the amount of light hitting it. threshold_img = cv.InRangeS(hue_img, low_range, high_range): The low_range, high_range parameters determine the color range. In this case, it is an orange ball, so you want to detect the color orange. For a good tutorial on using hue to specify color, refer to http://www.tomjewett.com/colors/hsb.html. Also, http://www.shervinemami.info/colorConversion.html includes a program that you can use to determine your values by selecting a specific color. Run the program. If you see a single black image, move this window, and you will expose the original image window as well. Now, take your target (in this case, an orange ping-pong ball) and move it into the frame. You should see something like what is shown in the following screenshot: Notice the white pixels in our threshold image showing where the ball is located. You can add more OpenCV code that gives the actual location of the ball. In our original image file of the ball's location, you can actually draw a rectangle around the ball as an indicator. Edit the file to look as follows: The added lines look like the following: hue_image = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV): This line creates a hue image out of the RGB image that was captured. Hue is easier to deal with when trying to capture real world images; for details, refer to http://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Changing_ColorSpaces_RGB_HSV_HLS.php. threshold_img = cv2.inRange(hue_image, low_range, high_range): This creates a new image that contains only those pixels that occur between the low_range and high_range n-tuples. contour, hierarchy = cv2.findContours(threshold_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE): This finds the contours, or groups of like pixels, in the threshold_img image. center = contour[0]: This identifies the first contour. moment = cv2.moments(center): This finds the moment of this group of pixels. (x,y),radius = cv2.minEnclosingCircle(center): This gives the x and y locations and the radius of the minimum circle that will enclose this group of pixels. center = (int(x),int(y)): Find the center of the x and y locations. radius = int(radius): The integer radius of the circle. img = cv2.circle(frame,center,radius,(0,255,0),2): Draw a circle on the image. Now that the code is ready, you can run it. You should see something that looks like the following screenshot: You can now track your object. You can modify the color by changing the low_range and high_range n-tuples. You also have the location of your object, so you can use the location to do path planning for your robot. Summary Your biped robot can walk, use sensors to avoid barriers, plans its path, and even see barriers or target. Resources for Article: Further resources on this subject: Develop a Digital Clock [article] Creating Random Insults [article] Raspberry Pi and 1-Wire [article]
Read more
  • 0
  • 0
  • 2411

article-image-integration-chefbot-hardware-and-interfacing-it-ros-using-python
Packt
02 Jun 2015
18 min read
Save for later

Integration of ChefBot Hardware and Interfacing it into ROS, Using Python

Packt
02 Jun 2015
18 min read
In this article by Lentin Joseph, author of the book Learning Robotics Using Python, we will see how to assemble this robot using these parts and also the final interfacing of sensors and other electronics components of this robot to Tiva C LaunchPad. We will also try to interface the necessary robotic components and sensors of ChefBot and program it in such a way that it will receive the values from all sensors and control the information from the PC. Launchpad will send all sensor values via a serial port to the PC and also receive control information (such as reset command, speed, and so on) from the PC. After receiving sensor values from the PC, a ROS Python node will receive the serial values and convert it to ROS Topics. There are Python nodes present in the PC that subscribe to the sensor's data and produces odometry. The data from the wheel encoders and IMU values are combined to calculate the odometry of the robot and detect obstacles by subscribing to the ultrasonic sensor and laser scan also, controlling the speed of the wheel motors by using the PID node. This node converts the linear velocity command to differential wheel velocity. After running these nodes, we can run SLAM to map the area and after running SLAM, we can run the AMCL nodes for localization and autonomous navigation. In the first section of this article, Building ChefBot hardware, we will see how to assemble the ChefBot hardware using its body parts and electronics components. (For more resources related to this topic, see here.) Building ChefBot hardware The first section of the robot that needs to be configured is the base plate. The base plate consists of two motors and its wheels, caster wheels, and base plate supports. The following image shows the top and bottom view of the base plate: Base plate with motors, wheels, and caster wheels The base plate has a radius of 15cm and motors with wheels are mounted on the opposite sides of the plate by cutting a section from the base plate. A rubber caster wheel is mounted on the opposite side of the base plate to give the robot good balance and support for the robot. We can either choose ball caster wheels or rubber caster wheels. The wires of the two motors are taken to the top of the base plate through a hole in the center of the base plate. To extend the layers of the robot, we will put base plate supports to connect the next layers. Now, we can see the next layer with the middle plate and connecting tubes. There are hollow tubes, which connect the base plate and the middle plate. A support is provided on the base plate for hollow tubes. The following figure shows the middle plate and connecting tubes: Middle plate with connecting tubes The connecting tubes will connect the base plate and the middle plate. There are four hollow tubes that connect the base plate to the middle plate. One end of these tubes is hollow, which can fit in the base plate support, and the other end is inserted with a hard plastic with an option to put a screw in the hole. The middle plate has no support except four holes: Fully assembled robot body The middle plate male connector helps to connect the middle plate and the top of the base plate tubes. At the top of the middle plate tubes, we can fit the top plate, which has four supports on the back. We can insert the top plate female connector into the top plate support and this is how we will get the fully assembled body of the robot. The bottom layer of the robot can be used to put the Printed Circuit Board (PCB) and battery. In the middle layer, we can put Kinect and Intel NUC. We can put a speaker and a mic if needed. We can use the top plate to carry food. The following figure shows the PCB prototype of robot; it consists of Tiva C LaunchPad, a motor driver, level shifters, and provisions to connect two motors, ultrasonic, and IMU: ChefBot PCB prototype The board is powered with a 12 V battery placed on the base plate. The two motors can be directly connected to the M1 and M2 male connectors. The NUC PC and Kinect are placed on the middle plate. The Launchpad board and Kinect should be connected to the NUC PC via USB. The PC and Kinect are powered using the same 12 V battery itself. We can use a lead-acid or lithium-polymer battery. Here, we are using a lead-acid cell for testing purposes. We will migrate to lithium-polymer for better performance and better backup. The following figure shows the complete assembled diagram of ChefBot: Fully assembled robot body After assembling all the parts of the robot, we will start working with the robot software. ChefBot's embedded code and ROS packages are available in GitHub. We can clone the code and start working with the software. Configuring ChefBot PC and setting ChefBot ROS packages In ChefBot, we are using Intel's NUC PC to handle the robot sensor data and its processing. After procuring the NUC PC, we have to install Ubuntu 14.04.2 or the latest updates of 14.04 LTS. After the installation of Ubuntu, install complete ROS and its packages. We can configure this PC separately, and after the completion of all the settings, we can put this in to the robot. The following are the procedures to install ChefBot packages on the NUC PC. Clone ChefBot's software packages from GitHub using the following command: $ git clone https://github.com/qboticslabs/Chefbot_ROS_pkg.git We can clone the code in our laptop and copy the chefbot folder to Intel's NUC PC. The chefbot folder consists of the ROS packages of ChefBot. In the NUC PC, create a ROS catkin workspace, copy the chefbot folder and move it inside the src directory of the catkin workspace. Build and install the source code of ChefBot by simply using the following command This should be executed inside the catkin workspace we created: $ catkin_make If all dependencies are properly installed in NUC, then the ChefBot packages will build and install in this system. After setting the ChefBot packages on the NUC PC, we can switch to the embedded code for ChefBot. Now, we can connect all the sensors in Launchpad. After uploading the code in Launchpad, we can again discuss ROS packages and how to run it. Interfacing ChefBot sensors with Tiva C LaunchPad We have discussed interfacing of individual sensors that we are going to use in ChefBot. In this section, we will discuss how to integrate sensors into the Launchpad board. The Energia code to program Tiva C LaunchPad is available on the cloned files at GitHub. The connection diagram of Tiva C LaunchPad with sensors is as follows. From this figure, we get to know how the sensors are interconnected with Launchpad: Sensor interfacing diagram of ChefBot M1 and M2 are two differential drive motors that we are using in this robot. The motors we are going to use here is DC Geared motor with an encoder from Pololu. The motor terminals are connected to the VNH2SP30 motor driver from Pololu. One of the motors is connected in reverse polarity because in differential steering, one motor rotates opposite to the other. If we send the same control signal to both the motors, each motor will rotate in the opposite direction. To avoid this condition, we will connect it in opposite polarities. The motor driver is connected to Tiva C LaunchPad through a 3.3 V-5 V bidirectional level shifter. One of the level shifter we will use here is available at: https://www.sparkfun.com/products/12009. The two channels of each encoder are connected to Launchpad via a level shifter. Currently, we are using one ultrasonic distance sensor for obstacle detection. In future, we could expand this number, if required. To get a good odometry estimate, we will put IMU sensor MPU 6050 through an I2C interface. The pins are directly connected to Launchpad because MPU6050 is 3.3 V compatible. To reset Launchpad from ROS nodes, we are allocating one pin as the output and connected to reset pin of Launchpad. When a specific character is sent to Launchpad, it will set the output pin to high and reset the device. In some situations, the error from the calculation may accumulate and it can affect the navigation of the robot. We are resetting Launchpad to clear this error. To monitor the battery level, we are allocating another pin to read the battery value. This feature is not currently implemented in the Energia code. The code you downloaded from GitHub consists of embedded code. We can see the main section of the code here and there is no need to explain all the sections because we already discussed it. Writing a ROS Python driver for ChefBot After uploading the embedded code to Launchpad, the next step is to handle the serial data from Launchpad and convert it to ROS Topics for further processing. The launchpad_node.py ROS Python driver node interfaces Tiva C LaunchPad to ROS. The launchpad_node.py file is on the script folder, which is inside the chefbot_bringup package. The following is the explanation of launchpad_node.py in important code sections: #ROS Python client import rospy import sys import time import math   #This python module helps to receive values from serial port which execute in a thread from SerialDataGateway import SerialDataGateway #Importing required ROS data types for the code from std_msgs.msg import Int16,Int32, Int64, Float32, String, Header, UInt64 #Importing ROS data type for IMU from sensor_msgs.msg import Imu The launchpad_node.py file imports the preceding modules. The main modules we can see is SerialDataGateway. This is a custom module written to receive serial data from the Launchpad board in a thread. We also need some data types of ROS to handle the sensor data. The main function of the node is given in the following code snippet: if __name__ =='__main__': rospy.init_node('launchpad_ros',anonymous=True) launchpad = Launchpad_Class() try:      launchpad.Start()    rospy.spin() except rospy.ROSInterruptException:    rospy.logwarn("Error in main function")   launchpad.Reset_Launchpad() launchpad.Stop() The main class of this node is called Launchpad_Class(). This class contains all the methods to start, stop, and convert serial data to ROS Topics. In the main function, we will create an object of Launchpad_Class(). After creating the object, we will call the Start() method, which will start the serial communication between Tiva C LaunchPad and PC. If we interrupt the driver node by pressing Ctrl + C, it will reset the Launchpad and stop the serial communication between the PC and Launchpad. The following code snippet is from the constructor function of Launchpad_Class(). In the following snippet, we will retrieve the port and baud rate of the Launchpad board from ROS parameters and initialize the SerialDateGateway object using these parameters. The SerialDataGateway object calls the _HandleReceivedLine() function inside this class when any incoming serial data arrives on the serial port. This function will process each line of serial data and extract, convert, and insert it to the appropriate headers of each ROS Topic data type: #Get serial port and baud rate of Tiva C Launchpad port = rospy.get_param("~port", "/dev/ttyACM0") baudRate = int(rospy.get_param("~baudRate", 115200))   ################################################################# rospy.loginfo("Starting with serial port: " + port + ", baud rate: " + str(baudRate))   #Initializing SerialDataGateway object with serial port, baud rate and callback function to handle incoming serial data self._SerialDataGateway = SerialDataGateway(port, baudRate, self._HandleReceivedLine) rospy.loginfo("Started serial communication")     ###################################################################Subscribers and Publishers   #Publisher for left and right wheel encoder values self._Left_Encoder = rospy.Publisher('lwheel',Int64,queue_size = 10) self._Right_Encoder = rospy.Publisher('rwheel',Int64,queue_size = 10)   #Publisher for Battery level(for upgrade purpose) self._Battery_Level = rospy.Publisher('battery_level',Float32,queue_size = 10) #Publisher for Ultrasonic distance sensor self._Ultrasonic_Value = rospy.Publisher('ultrasonic_distance',Float32,queue_size = 10)   #Publisher for IMU rotation quaternion values self._qx_ = rospy.Publisher('qx',Float32,queue_size = 10) self._qy_ = rospy.Publisher('qy',Float32,queue_size = 10) self._qz_ = rospy.Publisher('qz',Float32,queue_size = 10) self._qw_ = rospy.Publisher('qw',Float32,queue_size = 10)   #Publisher for entire serial data self._SerialPublisher = rospy.Publisher('serial', String,queue_size=10) We will create the ROS publisher object for sensors such as the encoder, IMU, and ultrasonic sensor as well as for the entire serial data for debugging purpose. We will also subscribe the speed commands for the left-hand side and the right-hand side wheel of the robot. When a speed command arrives on Topic, it calls the respective callbacks to send speed commands to the robot's Launchpad: self._left_motor_speed = rospy.Subscriber('left_wheel_speed',Float32,self._Update_Left_Speed) self._right_motor_speed = rospy.Subscriber('right_wheel_speed',Float32,self._Update_Right_Speed) After setting the ChefBot driver node, we need to interface the robot to a ROS navigation stack in order to perform autonomous navigation. The basic requirement for doing autonomous navigation is that the robot driver nodes, receive velocity command from ROS navigational stack. The robot can be controlled using teleoperation. In addition to these features, the robot must be able to compute its positional or odometry data and generate the tf data for sending into navigational stack. There must be a PID controller to control the robot motor velocity. The following ROS package helps to perform these functions. The differential_drive package contains nodes to perform the preceding operation. We are reusing these nodes in our package to implement these functionalities. The following is the link for the differential_drive package in ROS: http://wiki.ros.org/differential_drive The following figure shows how these nodes communicate with each other. We can also discuss the use of other nodes too: The purpose of each node in the chefbot_bringup package is as follows: twist_to_motors.py: This node will convert the ROS Twist command or linear and angular velocity to individual motor velocity target. The target velocities are published at a rate of the ~rate Hertz and the publish timeout_ticks times velocity after the Twist message stops. The following are the Topics and parameters that will be published and subscribed by this node: Publishing Topics: lwheel_vtarget (std_msgs/Float32): This is the the target velocity of the left wheel(m/s). rwheel_vtarget (std_msgs/Float32): This is the target velocity of the right wheel(m/s). Subscribing Topics: Twist (geometry_msgs/Twist): This is the target Twist command for the robot. The linear velocity in the x direction and angular velocity theta of the Twist messages are used in this robot. Important ROS parameters: ~base_width (float, default: 0.1): This is the distance between the robot's two wheels in meters. ~rate (int, default: 50): This is the rate at which velocity target is published(Hertz). ~timeout_ticks (int, default:2): This is the number of the velocity target message published after stopping the Twist messages. pid_velocity.py: This is a simple PID controller to control the speed of each motors by taking feedback from wheel encoders. In a differential drive system, we need one PID controller for each wheel. It will read the encoder data from each wheels and control the speed of each wheels. Publishing Topics: motor_cmd (Float32): This is the final output of the PID controller that goes to the motor. We can change the range of the PID output using the out_min and out_max ROS parameter. wheel_vel (Float32): This is the current velocity of the robot wheel in m/s. Subscribing Topics: wheel (Int16): This Topic is the output of a rotary encoder. There are individual Topics for each encoder of the robot. wheel_vtarget (Float32): This is the target velocity in m/s. Important parameters: ~Kp (float ,default: 10): This parameter is the proportional gain of the PID controller. ~Ki (float, default: 10): This parameter is the integral gain of the PID controller. ~Kd (float, default: 0.001): This parameter is the derivative gain of the PID controller. ~out_min (float, default: 255): This is the minimum limit of the velocity value to motor. This parameter limits the velocity value to motor called wheel_vel Topic. ~out_max (float, default: 255): This is the maximum limit of wheel_vel Topic(Hertz). ~rate (float, default: 20): This is the rate of publishing wheel_vel Topic. ticks_meter (float, default: 20): This is the number of wheel encoder ticks per meter. This is a global parameter because it's used in other nodes too. vel_threshold (float, default: 0.001): If the robot velocity drops below this parameter, we consider the wheel as stopped. If the velocity of the wheel is less than vel_threshold, we consider it as zero. encoder_min (int, default: 32768): This is the minimum value of encoder reading. encoder_max (int, default: 32768): This is the maximum value of encoder reading. wheel_low_wrap (int, default: 0.3 * (encoder_max - encoder_min) + encoder_min): These values decide whether the odometry is in negative or positive direction. wheel_high_wrap (int, default: 0.7 * (encoder_max - encoder_min) + encoder_min): These values decide whether the odometry is in the negative or positive direction. diff_tf.py: This node computes the transformation of odometry and broadcast between the odometry frame and the robot base frame. Publishing Topics: odom (nav_msgs/odometry): This publishes the odometry (current pose and twist of the robot. tf: This provides transformation between the odometry frame and the robot base link. Subscribing Topics: lwheel (std_msgs/Int16), rwheel (std_msgs/Int16): These are the output values from the left and right encoder of the robot. chefbot_keyboard_teleop.py: This node sends the Twist command using controls from the keyboard. Publishing Topics: cmd_vel_mux/input/teleop (geometry_msgs/Twist): This publishes the twist messages using keyboard commands. After discussing nodes in the chefbot_bringup package, we will look at the functions of launch files. Understanding ChefBot ROS launch files We will discuss the functions of each launch files of the chefbot_bringup package. robot_standalone.launch: The main function of this launch file is to start nodes such as launchpad_node, pid_velocity, diff_tf, and twist_to_motor to get sensor values from the robot and to send command velocity to the robot. keyboard_teleop.launch: This launch file will start the teleoperation by using the keyboard. This launch starts the chefbot_keyboard_teleop.py node to perform the keyboard teleoperation. 3dsensor.launch : This file will launch Kinect OpenNI drivers and start publishing RGB and depth stream. It will also start the depth stream to laser scanner node, which will convert point cloud to laser scan data. gmapping_demo.launch: This launch file will start SLAM gmapping nodes to map the area surrounding the robot. amcl_demo.launch: Using AMCL, the robot can localize and predict where it stands on the map. After localizing on the map, we can command the robot to move to a position on the map, then the robot can move autonomously from its current position to the goal position. view_robot.launch: This launch file displays the robot URDF model in RViz. view_navigation.launch: This launch file displays all the sensors necessary for the navigation of the robot. Summary This article was about assembling the hardware of ChefBot and integrating the embedded and ROS code into the robot to perform autonomous navigation. We assembled individual sections of the robot and connected the prototype PCB that we designed for the robot. This consists of the Launchpad board, motor driver, left shifter, ultrasonic, and IMU. The Launchpad board was flashed with the new embedded code, which can interface all sensors in the robot and can send or receive data from the PC. After discussing the embedded code, we wrote the ROS Python driver node to interface the serial data from the Launchpad board. After interfacing the Launchpad board, we computed the odometry data and differential drive controlling using nodes from the differential_drive package that existed in the ROS repository. We interfaced the robot to ROS navigation stack. This enables to perform SLAM and AMCL for autonomous navigation. We also discussed SLAM, AMCL, created map, and executed autonomous navigation on the robot. Resources for Article: Further resources on this subject: Learning Selenium Testing Tools with Python [article] Prototyping Arduino Projects using Python [article] Python functions – Avoid repeating code [article]
Read more
  • 0
  • 1
  • 4452
article-image-installing-and-configuring-network-monitoring-software
Packt
02 Jun 2015
9 min read
Save for later

Installing and Configuring Network Monitoring Software

Packt
02 Jun 2015
9 min read
This article written by Bill Pretty, Glenn Vander Veer, authors of the book Building Networks and Servers Using BeagleBone will serve as an installation guide for the software that will be used to monitor the traffic on your local network. These utilities can help determine which devices on your network are hogging the bandwidth, which slows down the network for other devices on your network. Here are the topics that we are going to cover: Installing traceroute and My Trace Route (MTR or Matt's Traceroute): These utilities will give you a real-time view of the connection between one node and another Installing Nmap: This utility is a network scanner that can list all the hosts on your network and all the services available on those hosts Installing iptraf-ng: This utility gathers various network traffic information and statistics (For more resources related to this topic, see here.) Installing Traceroute Traceroute is a tool that can show the path from one node on a network to another. This can help determine the ideal placement of a router to maximize wireless bandwidth in order to stream music and videos from the BeagleBone server to remote devices. Traceroute can be installed with the following command: apt-get install traceroute   Once Traceroute is installed, it can be run to find the path from the BeagleBone to any server anywhere in the world. For example, here's the route from my BeagelBone to the Canadian Google servers: Now, it is time to decipher all the information that is presented. This first command line tells traceroute the parameters that it must use: traceroute to google.ca (74.125.225.23), 30 hops max, 60 byte packets This gives the hostname, the IP address returned by the DNS server, the maximum number of hops to be taken, and the size of the data packet to be sent. The maximum number of hops can be changed with the –m flag and can be up to 255. In the context of this book, this will not have to be changed. After the first line, the next few lines show the trip from the BeagleBone, through the intermediate hosts (or hops), to the Google.ca server. Each line follows the following format: hop_number host_name (host IP_address) packet_round_trip_times From the command that was run previously (specifically hop number 4): 2 10.149.206.1 (10.149.206.1) 15.335 ms 17.319 ms 17.232 ms Here's a breakdown of the output: The hop number 2: This is a count of the number of hosts between this host and the originating host. The higher the number, the greater is the number of computers that the traffic has to go through to reach its destination. 10.149.206.1: This denotes the hostname. This is the result of a reverse DNS lookup on the IP address. If no information is returned from the DNS query (as in this case), the IP address of the host is given instead. (10.149.206.1): This is the actual host IP address. Various numbers: This is the round-trip time for a packet to go from the BeagleBone to the server and back again. These numbers will vary depending on network traffic, and lower is better. Sometimes, the traceroute will return some asterisks (*). This indicates that the packet has not been acknowledged by the host. If there are consecutive asterisks and the final destination is not reached, then there may be a routing problem. In a local network trace, it most likely is a firewall that is blocking the data packet. Installing My Traceroute My Traceroute (MTR) is an extension of traceroute, which probes the routers on the path from the packet source and destination, and keeps track of the response times of the hops. It does this repeatedly so that the response times can be averaged. Now, install mtr with the following command: sudo apt-get install mtr After it is run, mtr will provide quite a bit more information to look at, which would look like the following: While the output may look similar, the big advantage over traceroute is that the output is constantly updated. This allows you to accumulate trends and averages and also see how network performance varies over time. When using traceroute, there is a possibility that the packets that were sent to each hop happened to make the trip without incident, even in a situation where the route is suffering from intermittent packet loss. The mtr utility allows you to monitor this by gathering data over a wider range of time. Here's an mtr trace from my Beaglebone to my Android smartphone: Here's another trace, after I changed the orientation of the antennae of my router: As you can see, the original orientation was almost 100 milliseconds faster for ping traffic. Installing Nmap Nmap is designed to allow the scanning of networks in order to determine which hosts are up and what services are they offering. Nmap supports a large number of scanning options, which are overkill for what will be done in this book. Nmap is installed with the following command: sudo apt-get install nmap Answer Yes to install nmap and its dependent packages. Using Nmap After it is installed, run the following command to see all the hosts that are currently on the network: nmap –T4 –F <your_local_ip_range> The option -T4 sets the timing template to be used, and the -F option is for fast scanning. There are other options that can be used and found via the nmap manpage. Here, your_local_ip_range is within the range of addresses assigned by your router. Here's a node scan of my local network. If you have a lot of devices on your local network, this command may take a long time to complete. Now, I know that I have more nodes on my network, but they don't show up. This is because the command we ran didn't tell nmap to explicitly query each IP address to see whether the host responds but to query common ports that may be open to traffic. Instead, only use the -Pn option in the command to tell nmap to scan all the ports for every address in the range. This will scan more ports on each address to determine whether the host is active or not. Here, we can see that there are definitely more hosts registered in the router device table. This scan will attempt to scan a host IP address even if the device is powered off. Resetting the router and running the same scan will scan the same address range, but it will not return any device names for devices that are not powered at the time of the scan. You will notice that after scanning, nmap reports that some IP addresses' ports are closed and some are filtered. Closed ports are usually maintained on the addresses of devices that are locked down by their firewall. Filtered ports are on the addresses that will be handled by the router because there actually isn't a node assigned to these addresses. Here's a part of the output from an nmap scan of my Windows machine: Here's a part of the output of a scan of the BeagleBone: Installing iptraf-ng Iptraf-ng is a utility that monitors traffic on any of the interfaces or IP addresses on your network via custom filters. Because iptraf-ng is based on the ncurses libraries, we will have to install them first before downloading and compiling the actual iptraf-ng package. To install ncurses, run the following command: sudo apt-get install libncurses5-dev Here's how you will install ncurses and its dependent packages: Once ncurses is installed, download and extract the iptraf-ng tarball so that it can be built. At the time of writing this book, iptrf-ng's version 1.1.4 was available. This will change over time, and a quick search on Google will give you the latest and greatest version to download. You can download this version with the following command: wget https://fedorahosted.org/releases/i/p/iptraf-ng/iptraf-ng- <current_version_number>.tar.gz The following screenshot shows how to download the iptraf-ng tarball: After we have completed the downloading, extract the tarball using the following command: tar –xzf iptraf-ng-<current_version_number>.tar.gz Navigate to the iptraf-ng directory created by the tar command and issue the following commands: ./configure make sudo make install After these commands are complete, iptraf-ng is ready to run, using the following command: sudo iptraf-ng When the program starts, you will be presented with the following screen: Configuring iptraf-ng As an example, we are going to monitor all incoming traffic to the BeagleBone. In order to do this, iptraf-ng should be configured. Selecting the Configure... menu item will show you the following screen: Here, settings can be changed by highlighting an option in the left-hand side window and pressing Enter to select a new value, which will be shown in the Current Settings window. In this case, I have enabled all the options except Logging. Exit the configuration screen and enter the Filter Status screen. This is where we will set up the filter to only monitor traffic coming to the BeagleBone and from it. Then, the following screen will be presented: Selecting IP... will create an IP filter, and the following subscreen will pop up: Selecting Define new filter... will allow the creation and saving of a filter that will only display traffic for the IP address and the IP protocols that are selected, as shown in the following screenshot: Here, I have put in the BeagleBone's IP address, and to match all IP protocols. Once saved, return to the main menu and select IP traffic monitor. Here, you will be able to select the network interfaces to be monitored. Because my BeagleBone is connected to my wired network, I have selected eth0. The following screenshot should shows us the options: If all went well with your filter, you should see traffic to your BeagleBone and from it. Here are the entries for my PuTTy session; 192.168.17.2 is my Windows 8 machine, and 192.168.17.15 is my BeagleBone: Here's an image of the traffic generated by browsing the DLNA server from the Windows Explorer: Moreover, here's the traffic from my Android smartphone running a DLNA player, browsing the shared directories that were set up: Summary In this article, you saw how to install and configure the software that will be used to monitor the traffic on your local network. With these programs and a bit of experience, you can determine which devices on your network are hogging the bandwidth and find out whether you have any unauthorized users. Resources for Article: Further resources on this subject: Learning BeagleBone [article] Protecting GPG Keys in BeagleBone [article] Home Security by BeagleBone [article]
Read more
  • 0
  • 0
  • 2924

article-image-learning-beaglebone
Packt
08 May 2015
3 min read
Save for later

Learning BeagleBone

Packt
08 May 2015
3 min read
Today it is hard to deny the influence of technology in our lives. We live in an era where pretty much is automated and computerized. Among all the technological advancement that humankind has achieved, the invention of yet another important device, the BeagleBone, adds more relevance to our lives as technology progresses. Outperforming in its rudimentary stage, the BeagleBone is now equipped to deliver its promise of helping developers innovate. (For more resources related to this topic, see here.) Arranged in a chronological order, this book unfolds the amazing BeagleBone encompassing the right set of features that you need as a beginner. This collation of pages will walk you through the basics of BeagleBone boards along with exercises to guide a new user through the process of using the BeagleBone for the first time. Driving the current technology, you will find yourself at the center of innovation, programming in a standalone fashion BeagleBone White and the BeagleBone Black. As you progress, you will: Unbox a new BeagleBone Connect to external electronics with GPIO pins, analog inputs, and fast boot into Angstrom Linux Build a basic configuration of a desktop or a laptop system and program a BeagleBone board Practice simple exercises using the basic resources than what is on the board Build and refine an LED flasher Connect your BeagleBone to mobile devices Expand the BeagleBone for Bluetooth connectivity This book is directed to beginners who want to use BeagleBone as a vehicle for their learning. Makers who want to use BeagleBone to control their latest product and anyone who wants to learn to leverage current mobile technology. You can apply this knowledge on your own projects or adapt one of the many open source projects for BeagleBone. In the course of your project, you will learn more advanced techniques as you encounter hurdles. The theory presented here will provide a foundation to help surmount the challenges from your own projects. After going through the exercises in this book, thereby building an understanding of the essentials of the BeagleBone, you will not only be equipped with the tools that will magnify your capabilities, but also inspired to commence your journey in this hardware era. Now that you have a foundation, go forth and build your embedded device with the BeagleBone! Resources for Article: Further resources on this subject: Protecting GPG Keys in BeagleBone [article] Making the Unit Very Mobile - Controlling Legged Movement [article] Pulse width modulator [article]
Read more
  • 0
  • 0
  • 2744